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1. Introduction

1.1 History
A brief history of the concepts that will be developed in this report. The two spaces we are interested
in are known as the Poincaré disk and Poincaré half-space or upper half plane. Both of these are
named after Henri Poincaré, but it was originally developed by Eugenio Beltrami who used it to
show that hyperbolic geometry was equiconsistent with Euclidean geometry [8]. A natural question
that arises in the study of models concerns the automorphisms of that space, and in the case of the
upper half plane, these turn out to be the Möbius transformations. Möbius transformations were
developed by August Ferdinand Möbius around 1827 during his study of analytical geometry. A
group we will see later called the projective special linear group, which is very closely related
to Mobius transformations, was developed by Evariste Galois in the 1830s, in the context of Lie
Groups. Continuous one-parameter semigroups of holomorphic self-maps of the unit disc D in
the complex plane C have been studied since the early 1900s, both for their intrinsic interest in
complex analysis and for applications to areas such as differential equations [4].

1.2 Complex Analysis
To begin we state some standard definitions in complex analysis.

Definition 1.2.1 — Cauchy Riemann Equations.
Let z= x+ iy∈C for x,y∈R, and f (x,y)= u(x,y)+ iv(x,y). The Cauchy-Riemann Equations
are given by,

∂u
∂x

=
∂v
∂y

∂u
∂y

=−∂v
∂x

Definition 1.2.2 — Holomorphic.
A map f : U ⊂ C 7→ C is holomorphic if it satisfies the Cauchy Riemann Equations on U

Definition 1.2.3 — Biholomorphism.
A map f : C 7→ C, is biholomorphic if f and f−1 are holomorphic.

The following two theorems are fundamental in complex analysis.
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Theorem 1.2.1 — Maximum Modulus Principle [2].
Let C be a simple closed contour in C and f : C 7→ C be holomorphic, then for z0 in the
interior of C,

| f (z0)| ≤ max
z∈C

| f (z)|

with equality iff f is constant on C.

We can use the maximum modulus to prove the following theorem about complex functions.

Theorem 1.2.2 — Schwarz Lemma [4].
Let ϕ :D 7→D be holomorphic with ϕ(0) = 0. Then |ϕ(z)| ≤ |z| and |ϕ ′(0)| ≤ 1, with equality
iff ϕ is a rotation.

Schwarz Lemma Proof
Let f (z) = ϕ(z)

z for z ̸= 0 and f (0) = ϕ ′(0). The map f : D 7→C is holomorphic. Let 0 < r < 1
and |z| ≤ r, by the maximum modulus principle,

| f (z)| ≤ max
|z|≤r

| f (z)|= max
|z|=r

∣∣∣∣ϕ(z)
z

∣∣∣∣≤ max
|z|=r

1
|z|

=
1
r

Letting r → 1 we obtain | f (z)| = 1, in particular |ϕ(z)| ≤ |z| and |ϕ ′(0)| = | f (0)| ≤ 1. If
equality holds for some z ∈D, then | f (z)| is constant on D, so ϕ(z) = eiθ z for some θ ∈R. If
ϕ(z) = eiθ z then |ϕ(z)|= |z| and ϕ ′(z) = eiθ so |ϕ ′(0)|= 1 and hence the reverse direction
holds.

The following function will be used frequently for its properties of being an automorphism, mapping
a specified point to 0 and being its own inverse.

Theorem 1.2.3 — Automorphisms of the unit disk.
Let a ∈ D and Ta : D̄ 7→ C defined by,

Ta(z) =
a− z
1− āz

Then ∥Tα(z)∥ ≤ 1 with equality iff ∥z∥= 1. Ta is also an automorphism of D.

Proof
Let z ∈ ∂D and α ∈ D, then ∥z∥= zz̄ = 1,

Ta(z) =
a− z
1− āz
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=
az̄−1
z̄− ā

(
× z̄

z̄

)
=

(az̄−1)(z−a)

∥z−a∥2

(
× z−α

z−a

)
=

(z−a)2

z∥z−a∥2

(
× z

z

)
Thus,

∥Ta(z)∥= 1

Since the only pole of Ta is at 1/ā which is outside the disk, T is holomorphic and the result
follows from maximum modulus theorem.

Ta ◦Ta(z) =
a−Ta(z)
1− āTa(z)

=
a− a−z

1−āz

1− ā a−z
1−āz

=
a(1− āz)− (a− z)
1− āz− ā(a− z)

= z

Ta is its own inverse thus Ta is an automorphism of the unit disk.

The Schwarz Lemma is quite restrictive, requiring f (0) = 0, so we extend it to all holomorphic
functions. To do this we use the Schwarz lemma along with the automorphism Ta,

Theorem 1.2.4 — Schwarz Pick Lemma.
Let ϕ : D 7→ D be holomorphic. Then for u,v ∈ D,

|Tϕ(u)(ϕ(v))| ≤ |Tu(v)|

Schwarz Pick Lemma Proof
Let F = Tϕ(u) ◦ϕ ◦Tu. Then,

F(0) = Tϕ(u) ◦ϕ ◦Tu(0) = Tϕ(u) ◦ϕ(u) = 0

Applying the Schwarz Lemma, |F(z)| ≤ |z|. Let z = Tu(v), then |Tϕ(u)(ϕ(v))| ≤ |Tu(v)|



2. Hyperbolic Metric

A general metric tensor on the complex plane is given by,

ds2 = λ
2(z, z̄)dzdz̄

the length of a curve γ in the complex plane is given by,

ℓ(γ) =
∫

γ

ds =
∫

γ

λ (z)|dz |

and a metric for our space is given by

d(u,v) = inf
γ
ℓ(γ)

where γ is any curve in the space from u to v.

We will construct our ’density function’ λ such that Ta is an isometry for the metric d on the unit
disk D, namely d(u,v) = d(Ta(u),Ta(v)) for any u,v.

Proposition 2.0.1 The density function λ is given by

λ (z) =
2

1−∥z∥2

Proof
Let u,v ∈ D and Ta an automorphism of the disk. Then,

d(u,v) = inf
γ

∫
γ

λ (z)|dz |

d(Ta(u),Ta(v)) = inf
γ ′

∫
γ ′

λ (z)|dz |

= inf
γ

∫
γ

λ (Ta(z))|T ′
a(z)||dz |

Thus a sufficient condition for Ta to be an isometry is λ (Ta(z))|T ′
a(z)|= λ (z).

|T ′
a(z)|=

|1− āz+ ā(z−a)|
|1− āz|2
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=
1−|a|2

|1− āz|2

λ (Ta(z)) =
2

1−|Ta(z)|2

=
2

1−| z−a
1−āz |2

=
2|1− āz|2

|1− āz|2 −|z−a|2

=
2|1− āz|2

1−2Re(āz)+ |āz|2 − (|z|2 −2Re(az̄)+ |a|2)

=
2|1− āz|2

(1−|a|2)(1−|z|2)

Therefore

λ (Ta(z))|T ′
a(z)|=

2|1− āz|2

(1−|a|2)(1−|z|2)
1−|a|2

|1− āz|2

=
2

1−|z|2

= λ (z)

The Poincaré Disk is the unit disk in the complex plane along with the Riemann metric given
above. D refers to the Poincaré disk unless stated otherwise.

Example 2.1 — Distance to 0.
We can find an explicit formula for the distance to the origin using the above integral. Let u ∈ D,
then γ(t) = ut for 0 ≤ t ≤ 1

d(0,u) =
∫

γ

2
1−|z|2

|dz |

=
∫ 1

0

2
1−|u|2t2 |u|dt

= |u|
∫ 1

0

1
1+ |u|t

+
1

1−|u|t
dt

= |u|
(

1
|u|

ln(1+ |u|t)− 1
|u|

ln(1−|u|t)
)1

0

= ln(1+ |u|)− ln(1−|u|)

= ln
(

1+ |u|
1−|u|

)



3. Geometry

3.1 Geodesics
Let u,v ∈ D, the geodesic between u and v is the shortest path joining them.

Definition 3.1.1 Let u,v ∈ D and γ a curve in D passing through u,v. γ is a geodesic if

d(u,v) =
∫

γ

λ (z)dz

Before we find an explicit formula for a geodesic between two points, we need some properties of
geodesics. Since our density function, λ only depends on |z|, the geodesic between the origin and
another point is a straight line.

Let u,v lie on the interior of D. The automorphism ϕ(z) = z−u
1−ūz maps u 7→ 0. As ϕ is an isometry

for the unit disk, it maps the geodesic between u and v goes to the straight line between 0 and ϕ(v).
Thus if we extend the geodesic towards the boundary, the straight line intersects the boundary at
right angles, and since the automorphisms are conformal maps [10], the geodesic between u and v
intersects the boundary at right angles. Moreover Möbius transformations take circles to circles,
and a straight line can be considered as a circle through infinity on the Riemann sphere, thus the
geodesic between u and v is an arc of a circle. To find the geodesics we make use of the following
proposition,

Proposition 3.1.1 In the Euclidean plane R2, the circle x2 + y2 +ax+by+1 = 0 intersects
the circle x2 + y2 = 1 at right angles.

Proof
Let C1 denote the circle x2 + y2 +ax+by+1 = 0 and C2 denote x2 + y2 = 1. Substituting C2
into C1,

ax+by+2 = 0

Differentiating C1 w.r.t x,
2x+a+(2y+b)y′ = 0

Thus a tangent vector is given by

(1,y′) =
(

1,−2x+a
2y+b

)
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Similarly for C1,

2x+2yy′ = 0 ⇒ (1,y′) =
(

1,
x
y

)
Thus,

C′
1 ·C′

2 =

(
1,−2x+a

2y+b

)
·
(

1,
x
y

)
= 1+

2x+a
2y+b

(
1,

x
y

)
=

y(2y+b)+ x(2x+a)
(2y+b)y

=
2+ax+by
(2y+b)y

Since ax+by+2 = 0 at the intersection of C1 and C2,

C′
1 ·C′

2 = 0

Therefore C1 intersects C2 at right angles.

Example 3.1 — Formula for geodesics.
Let v = v0 + iv1,w = w0 + iw1 ∈ ∂D. The geodesic passing through v and w is given by x2 + y2 +
ax+by+1 = 0 for appropriate a and b. Substituting v and w,

0 = v2
0 + v2

1 +av0 +bv1 +1

0 = w2
0 +w2

1 +aw0 +bw1 +1(
v0 v1
w0 w1

)(
a
b

)
=

(
−1− v2

0 − v2
1

−1−w2
0 −w2

1

)
(

a
b

)
=

−1
v0w1 − v1w0

(
w1 −v1
−w0 v0

)(
1+ |v|2
1+ |w|2

)
Therefore,

a =
v1(1+ |w|2)−w1(1+ |v|2)

v0w1 − v1w0

b =
w0(1+ |v|2)− v0(1+ |w|2)

v0w1 − v1w0

Substituting these into the formula for the circle, x2 + y2 +ax+by+1 = 0, we obtain an explicit
expression for the geodesic between v and w

3.2 Triangles
Now we find a formula for the area of a triangle in the disk. Using the results from the previous
section, the Riemann metric for the unit disk is given by

ds2 =
4

(1−|z|2)2 |dz |2
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Writing dz = dx+dy i, we find the first fundamental form for ds2
(

ds2 = E dx2 +2F dxdy+Gdy2
)

has coefficients,

E =
4

(1−|z|2)2

F = 0

G =
4

(1−|z|2)2

Thus we can compute the curvature of D using the following formula [6]

Theorem 3.2.1 For a parametrisation with F = 0, the Gaussian curvature K is given by,

K =
−1

2
√

EG

(
∂

∂x
Gx√
EG

+
∂

∂y
Ey√
EG

)

Example 3.2 Calculating K for the Poincaré disk.

√
EG = E

Gx =
∂

∂x
4

1− x2 − y2 Ey =
∂

∂y
4

1− x2 − y2

=
16x

(1− x2 − y2)3 =
16y

(1− x2 − y2)3

∂

∂x
Gx√
EG

=
∂

∂x
16x

1− x2 − y2
∂

∂y
Ey√
EG

=
∂

∂y
16y

1− x2 − y2

=
4(1− x2 − y2)+8x2

(1− x2 − y2)2 =
4(1− x2 − y2)+862

(1− x2 − y2)2

=
4(1+ x2 − y2)

(1− x2 − y2)2 =
4(1− x2 + y2)

(1− x2 − y2)2

K =
−1

2
√

EG

(
∂

∂x
Gx√
EG

+
∂

∂y
Ey√
EG

)
=

−(1− x2 − y2)2

8

(
4(1+ x2 − y2)

(1− x2 − y2)2 +
4(1− x2 + y2)

(1− x2 − y2)2

)
=

−(1− x2 − y2)2

8
8

(1− x2 − y2)2

=−1

Therefore D has Gaussian curvature −1. The Poincaré Disk is referred to as a model for the
hyperbolic plane since they both have constant negative curvature.

For a general triangle in the Poincaré disk, we can calculate its area using Gauss-Bonnet [5]
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Theorem 3.2.2 — Gauss Bonnet.
Suppose M is a compact two dimensional Riemannian manifold with boundary ∂M. Let K be
the Gaussian curvature of M and kg be the geodesic curvature of ∂M. Then,

∫
M

K dA+
∫

∂M
kg ds = 2πχ(M)

where dA is the area element, ds is the line element and χ(M) is the Euler characteristic of M.
Reformulated for a geodesic triangle T (the sides of the triangle lie of geodesics),

∫
T

K = α +β + γ −π

where α,β ,γ are the interior angles of T .

Example 3.3 — Area in D.
We found previously that K =−1, therefore

∫
T
= A = π − (α +β + γ)

For right angled triangles we have a nice relationship between the side lengths not dissimilar from
the Pythagorean Theorem for Euclidean right angled triangles.

Theorem 3.2.3 — Hyperbolic Pythagoras’ Theorem.
Let △(ABC) be a right angled triangle in D with one vertex at the origin, side lengths a, b
and hypotenuse c. Then,

coshacoshb = coshc

Hyperbolic Pythagoras’ Theorem Proof
Without loss of generality, we assume B = u lies on the Re axis and C = vi on the Im axis,
since rotations are isometries of the unit disk.

u

vi

0

D

The geodesic from 0 to u is the straight line lying on the real axis, thus the integral in dD
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becomes a standard single variable integral,

a =
∫ u

0

2
1− t2 dt

=
∫ u

0

1
1+ t

+
1

1− t
dt

= ln(1+ t)− ln(1− t)
∣∣u
t=0

= ln
(

1+u
1−u

)
Similarly for v

b = ln
(

1+ v
1− v

)

Since the line BC doesn’t lie on a straight line through the origin, we can’t use the same
procedure. Instead take the automorphism of the unit disk,

ϕ(z) =
z− vi
1+ viz

This maps v 7→ 0 and u 7→ u−vi
1+uiv . Then we take the integral over γ(t) = ϕ(u)t for t ∈ [0,1].

c =
∫ 1

0

2|ϕ(u)|
1−|ϕ(u)|2t2 dt

= |ϕ(u)|
∫ 1

0

1
1+ |ϕ(u)t

+
1

1−|ϕ(u)t
dt

= ln
(

1+ |ϕ(u)|
1−|ϕ(u)|

)

Now we build up to the LHS of the equality,

coshx =
ex + e−x

2

coshlnx =
elnx + e− lnx

2

=
x+ 1

x
2

cos ln
1+u
1−u

=
1+u
1−u +

1−u
1+u

2

=
(1+u)2 +(1−u)2

2(1−u)2

=
1+u2

1−u2

Therefore,
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coshacoshb =
1+u2

1−u2
1+ v2

1− v2

Switching our attention to the RHS,

coshc =
1+ |ϕ(u)|2

1−|ϕ(u)|2

=
1+

∣∣ u−vi
1+uiv

∣∣2
1−

∣∣ u−vi
1+uiv

∣∣2
=

|1+uvi|2 + |u− vi|2

|1+uvi|2 −|u− vi|2

=
1+u2v2 +u2 + v2

1+u2v2 −u2 − v2

=
(1+u2)(1+ v2)

(1−u2)(1− v2)

Therefore,

coshacoshb = coshc
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4. Hyperbolic Metric

Similarly to the Poincaré Disk, we will find the Riemann metric for the upper half plane {z ∈
C | Im(z)> 0}. To avoid confusion we will denote the density and Riemann metric on D as λD
and dD respectively and the corresponding functions on the upper half plane as λH and dH.

Proposition 4.0.1 The density function λH for the upper half plane preserving the metric in
Poincaré disk is given by,

λH(z) =
1

Im(z)

Proof
Let ϕ : D 7→H be defined by ϕ(z) = z+i

1+iz . Then similarly to the Poincaré disk, we can use
change of variables to move from H to D,

λD(ϕ(z)) =
1

1−|ϕ(z)|2

=
1|1+ iz|2

|1+ iz|2 −|z+ i|2

=
|1+ iz|2

2Im(z)

|ϕ ′(z)|= 2
|1+ iz|2

λH(z) = |ϕ ′(z)|λD(ϕ(z))

=
2

|1+ iz|2
|1+ iz|2

2Im(z)

=
1

Im(z)

When we studied the Poincaré disk, we started with automorphisms of the unit disk, and found
a Riemann metric with those automorphisms as the isometries for the metric. Now we have a
Riemann metric on the upper half plane, and we want to find the automorphisms of H which are
isometries for dH.

Definition 4.0.1 Let a,b,c,d ∈ C satisfying ad −bc ̸= 0 then
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A(z) =
az+b
cz+d

is a Möbius transformation.

We can identify the coefficients a,b,c,d with the entries of a 2x2 matrix, namely

(
a b
c d

)
→ az+d

cz+d

Suppose we have a Möbius Transformation ϕ with coefficients a,b,c,d ∈ R.

Proposition 4.0.2 The map f defined by identifying the matrix entries with a Möbius trans-
formation is a homomorphism from SL(2) to the group of Möbius transformations under
composition.

Proof
We need to check that f (xy) = f (x) f (y), or equivalently f (xy)(z) = f (x) ◦ f (y)(z) for all

z ∈ C. Let x =
(

a b
c d

)
,y =

(
e f
g h

)
∈ SL(2,R).

f (xy)(z) = f
((

a b
c d

)(
e f
g h

))
(z)

= f
(

ae+bg a f +bh
ce+dg c f +dh

)
(z)

=
(ae+bg)z+a f +bh
(ce+dg)z+ c f +dh

f (x)◦ f (y)(z) = f
(

a b
c d

)
◦ f

(
e f
g h

)
(z)

= f
(

a b
c d

)(
ez+ f
gz+h

)
=

a ez+ f
gz+h +b

c ez+ f
gz+h +d

=
a(ez+ f )+b(gz+h)
c(ez+ f )+d(gz+h)

= f (xy)(z)

This homomorphism is surjective with kernel consisting of {I,−I}. Thus we call the quotient
SL(2,R)/{I,−I} the projective special linear group, PSL(2,R) which is isomorphic to the group
of Möbius transformations.

From this point onwards, it is assumed that a Möbius transformation ϕ has real coefficients
a,b,c,d ∈ R such that ad −bc = 1 unless stated otherwise.
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Proposition 4.0.3 The Möbius transformations are automorphisms of H and isometries for
dH.

Proof
ϕ maps the real axis to itself, so it suffices to check that a point on the interior of H is mapped
back into the interior of H.

ϕ(i) =
ai+b
ci+d

=
bd +ac+ i

c2 +d2

Therefore ϕ(i) is in the interior of H and ϕ is an automorphism of H.
To show ϕ is an isometry for H, we have the same sufficient condition as the unit disk,

λH(z) = |ϕ ′(z)|λH(ϕ(z))

for any z ∈H then ϕ is an isometry. Let z = x+ iy ∈ C

ϕ(z) =
a(x+ iy)+b
c(x+ iy)+d

=
(ax+b+ iay)(cx+d − icy)

(cx+d)2 + y2

Im(ϕ(z)) =
ay(cx+d)− cy(ax+b)

|cz+d|2

=
xy(ac−ac)+ y(ad −bc)

|cz+d|2

=
Im(z)

|cz+d|2

|ϕ ′(z)|= a(cz+d)− c(az+b)
|cz+d|2

=
1

|cz+d|2

|ϕ ′(z)|λH(ϕ(z)) = |ϕ ′(z)| 1
Im(ϕ(z))

=
1

|cz+d|2
|cz+d|2

Im(z)
= λH(z)

Therefore ϕ is an isometry of H.

Möbius Transformations will be studied in more detail in the next chapter.



5. Geometry

5.1 Geodesics
As with the Poincaré Disk, we will describe the geodesics and triangles of the upper half plane. Let
u,v ∈ D, the geodesic between u and v is the shortest path joining them.

Definition 5.1.1 Let u,v ∈ D and γ a curve in H passing through u,v. γ is a geodesic if

dH(u,v) =
∫

γ

λH(z)dz

The discussion at the beginning of section 6.1 applies here, we want circles that intersect the real
axis at right angles.

Proposition 5.1.1 In the Euclidean plane R2, the circle (x− a)2 + y2 = r2 intersects the x
axis at right angles.

Thus to find the geodesic we solve the linear system with u = u0 +u1i and v = v0 + v1i lying on
that line for a,r,

a =
|u|2 −|v|2

2(u0 + v0)

r2 = (u0 −a)2 +u2
1

5.2 Triangles
Following the same methodology as in Section 6.2, we find the upper half plane has constant
negative curvature −1. Thus A = π − (α +β + γ)
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6. Classification

To motivate our classification, we examine the fixed points of a Möbius transformation. Let ϕ be a

Möbius transformation with coefficients given by A =

(
a b
c d

)
∈ PSL(2,R). A fixed point of ϕ is

a point z ∈ C such that ϕ(z) = z, thus

z =
az+b
cz+d

z(cz+d) = az+b

0 = cz2 +(d −a)z−b

∆ = (a−d)2 +4bc

= (a−d)2 +4(ad −1)

= (a+d)2 −4

Thus since a,d are real, we get two real fixed points when (a+ d)2 > 4, one fixed point when
(a+d)2 = 4 and two complex fixed points when (a+d) ∈ [0,4).

A useful property of the trace is given by the following,

Proposition 6.0.1 Let D,B ∈ SL(2,R), then

trDBD−1 = trB

Proof
Let A ∈ SL(2,R) and B ∈ SL(2,R), then the trAB is the sum of the eigenvalues of AB, which
is given by the characteristic polynomial,

det(BA−λ I) = det
(
B−1(BA−λ I)B

)
= det(AB−λ I)

= 0

Thus AB and BA have the same eigenvalues and therefore trAB = trBA.

Let D,B ∈ SL(2,R), then tr
(
DBD−1

)
= tr

(
(DB)D−1

)
= tr

(
D−1(DB)

)
= trB
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6.1 Parabolic

Definition 6.1.1 A Möbius transformation ϕ is Parabolic if ϕ has one fixed point.

Equivalently, (a+ d)2 = 4. We note that since the coefficients are real, the fixed point lies on
the boundary of H. An example of a parabolic transformation is the translation z → z+ 2 in H.
Geometrically parabolic transformations are translations in the upper half complex plane, more
specifically they’re translation around a horoball at the fixed point.

Definition 6.1.2 Let p be a point on the boundary of H, Let Cp be a Euclidean circle tangent
to the boundary at p. Then the region bound by Cp is a horoball at p, denoted Hp. Note if p is
the point at ∞ then C∞ is a horizontal line and H∞ is the Euclidean half plane above C∞

Proposition 6.1.1 Let A(z) = z+a, for a ∈ R. Then A fixes H∞.

This follows from the definition of H∞, now we generalise this proposition to arbitrary hyperbolic
transformations.

Theorem 6.1.2 Let ϕ be a parabolic Möbius transformation with a fixed point p. Then Hp is
invariant under ϕ

Proof [7]
Let D = −1

z−p , D conjugates B to A, namely, A(z) = DBD−1(z). By Prop 6.0.1, A is also a
parabolic transformation, with a fixed point at infinity and thus fixes H∞. Let H∞ be a horoball
with ∂H∞ = {z ∈ C | Im(z) = t0}. D−1 maps ∂H∞ to Cp and R to R. Since ∂H∞ and R are
tangent at ∞, Cp is tangent to R at p. Therefore Hp = D−1(H∞) is a horoball at p, and since A
leaves H∞ invariant, we conclude that B leaves Hp invariant.

Example 6.1 — Parabolic.
Let ϕ : H 7→H be defined by

ϕ(z) =
2z−1

z

ϕ is parabolic since (trϕ)2 = 4.
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6.2 Elliptic

Definition 6.2.1 A Möbius transformation ϕ is Elliptic if ϕ has two complex fixed points.

Equivalently, (a+d)2 ∈ [0,4). Since the coefficients are real, we cannot have one complex root.
Applying the conjugate root theorem, we have one fixed point in H and the other is outside H.
Geometrically elliptic transformations are rotations around the fixed point.

Example 6.2 — Elliptic.
Let ϕ : D 7→ D be defined by

ϕ(z) = iz

ϕ is elliptic since it has one fixed point in D. Visually, we don’t see the points moving since we are
rotating by π

2 radians each iteration.
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6.3 Hyperbolic

Definition 6.3.1 A Möbius transformation ϕ is Hyperbolic if ϕ has two distinct real fixed
points.

Equivalently, (a+d)2 > 4. An example of a hyperbolic transformation is the dilation z → 2z in H.
Geometrically hyperbolic transformations are dilations in the upper half complex plane.

Proposition 6.3.1 Let A(z) = λ z for λ > 1 and define,

ℓ(A) = inf
z∈H

dH(z,A(z))

Then inf is achieved for z ∈ Im.

Proof [7]
Let z ∈H. The radial projections of z and A(z) onto the imaginary axis are |z|i and λ |z|i. Let
φp(w) =

w−p
w−p̄ . φp maps the upper half plane to the unit disk sending p → 0.

dH(z,λ z) = dD

(
0,
(λ −1)z
λ z− z̄

)

= ln
1+ |(λ−1)z|

|λ z−z̄|

1− |(λ−1)z|
|λ z−z̄|

= ln
|λ z− z̄|+ |(λ −1)z|
|λ z− z̄|− |(λ −1)z|

≥ ln
|λ z|+ |z̄|+ |(λ −1)z|
|λ z|+ |z̄|− |(λ −1)z|

= lnλ

= dH(i,λ i)

= dH(|z|i,λ |z|i)

Therefore the distance between z and λ z has a minimum of the distance between their radial
projections onto the imaginary axis. Equality occurs when |λ z− z̄|= |λ z|+ |z̄|.

|λ z− z̄|2 = λ
2|z|2 −2λ Re

{
z2}+ |z̄|2

(|λ z|+ |z̄|)2 = (λ +1)2|z|2

Re(z2) = |z|2

Therefore Re(z) = 0, so the minimum is achieved on the imaginary axis.
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Theorem 6.3.2 Let B be a hyperbolic Möbius transformation with fixed points (u,v) and L(t)
be the geodesic in H between u and v. Then ℓ(B) achieves a minimum iff z ∈ ℓ(B)

Proof [7]
We can assume u > v. Let D(z) = z−u

z−v , then D takes the fixed points of B, u, v to 0 and ∞

respectively. D is also an isometry of H and maps L to Im. Thus we have BDB−1(z) = λ z for
some λ > 0, so we apply the previous proposition to BDB−1 if λ > 1 and BD−1B−1 if λ < 1.
Since the identity is not hyperbolic, λ ̸= 1.

Example 6.3 — Hyperbolic.
Let ϕ : H 7→H be defined by

ϕ(z) = 2z

ϕ is parabolic since (trϕ)2 = 9.
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7. Julia’s Lemma

In this section we prove Julia’s lemma, a more general theorem than the Denjoy Wolff theorem,
which we will use to prove the Denjoy Wolff theorem. The main type of set we will be dealing
with throughout this chapter is called a horocycle.

Definition 7.0.1 — Horocycle.
Let τ ∈ ∂D, and R > 0. The horocycle E(τ,R) is,

E(τ,R) = {z ∈ D | |τ − z|2

1−|z|2
< R}

E(τ,R) is an open Euclidean disk tangent to the unit disk at τ of radius R/(R+1). To begin we
prove a property of points inside a horocycle.

Proposition 7.0.1 z ∈ E(τ,R) iff

liminf
w→τ

dD(z,w)−dD(0,w)< lnR

Proof
Let z ∈ D, firstly we use Tz to map z → 0 and then apply Example 3.1.

dD(z,w)−dD(0,w) = dD(0,Tz(w))−dD(0,w)

= ln
(

1+ |Tz(w)|
1−|Tz(w)|

)
− ln

(
1+ |w|
1−|w|

)
= ln

(
1−|w|

1−|Tz(w)|

)
− ln

(
1+ |w|

1+ |Tz(w)|

)

Since |w| → 1 as w → τ ,

lim
w→τ

ln
(

1+ |w|
1+ |Tz(w)|

)
= 0
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This allows us to replace the minus sign above with a positive one,

liminf
w→τ

dD(z,w)−dD(0,w) = liminf
w→τ

ln
(

1−|w|
1−|Tz(w)|

)
+ ln

(
1+ |w|

1+ |Tz(w)|

)
= liminf

w→τ
ln
(

1−|w|2

1−|Tz(w)|2

)

Simplifying the argument of the logarithm,

1−|w|2

1−|Tz(w)|2
= (1−|w|2) |1− z̄w|2

|1− z̄w|2 −|z−w|2

=
(1−|w|2)|1− z̄w|2

1−2Re(z̄w)+ |z|2|w|2 − (|z|2 −2Re(z̄w)+ |w|2)

=
(1−|w|2)|1− z̄w|2

(1−|w|2)(1−|z|2)

=
|1− z̄w|2

1−|z|2

=
|w̄−|w|2z̄|2

|w|2(1−|z|2)

=
|w−|w|2z|2

|w|2(1−|z|2)

Since |w| → 1 as w → τ ,

liminf
w→τ

dD(z,w)−dD(0,w) = ln
(
|τ − z|2

1−|z|2

)

So the proposition follows from the definition of a horocycle.

The next notion we need is called the boundary dilation coefficient which measures how quickly ϕ

moves points towards σ .

Definition 7.0.2 — Boundary Dilation Coefficient.
Let ϕ : D 7→ D be holomorphic and σ ∈ ∂D, then

αϕ(σ) = liminf
z→σ

1−|ϕ(z)|
1−|z|

is the boundary dilation coefficient.

Similarly to the horocycle, we prove a property of the boundary dilation coefficient.

Proposition 7.0.2
liminf

w→σ
dD(0,w)−dD(0,ϕ(w)) = lnαϕ(σ)
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Proof
Using Example 3.1,

dD(0,w)−dD(0,ϕ(w)) = ln
(

1+ |w|
1−|w|

)
− ln

(
1+ |ϕ(w)|
1−|ϕ(w)|

)
= ln

(
1−|ϕ(w)|

1−|w|

)
+ ln

(
1+ |w|

1+ |ϕ(w)|

)

Therefore,
liminf

w→σ
dD(0,w)−dD(0,ϕ(w)) = lnαϕ(σ)

The final proposition we need before we can prove Julia’s Lemma involves a property of the
hyperbolic metric.

Proposition 7.0.3 Let ϕ : D 7→ D be holomorphic, then ϕ contracts distances with respect to
the hyperbolic metric dD. Namely,

dD(ϕ(u),ϕ(v))≤ dD(u,v)

for u,v ∈ D. Equality occurs iff ϕ is an automorphism of the unit disk

Proof
Equality follows from the construction of dD,

dD(ϕ(u),ϕ(v)) = dD(0,Tϕ(u)(ϕ(v)))

= ln
(

1+ |Tϕ(u)(ϕ(v))|
1−|Tϕ(u)(ϕ(v))|

)
By the Schwarz Pick Lemma

≤ ln
(

1+ |Tu(v)|
1−|Tu(v)

)
= dD(u,v)

Theorem 7.0.4 — Julia’s Lemma.
Let ϕ : D 7→ D be holomorphic and σ∂D. Assume αϕ(σ)< ∞, then there exists η ∈ D such
that for all R > 0,

ϕ(E(σ ,R))⊂ E(η ,αϕ(σ)R)

Julia’s Lemma Proof
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Since αϕ(σ)< ∞ we can find a sequence (w1,w2, ...) converging to σ such that,

lim
k→∞

1−|ϕ(wk)|
1−|wk|

= αϕ(σ)

Using Prop 7.0.2,
lim
k→∞

dD(0,wk)−dD(0,ϕ(wk)) = lnαϕ(σ)

Let η = limk→∞ ϕ(wk) and z ∈ E(σ ,R). We want to show that ϕ(z) ∈ E(η ,αϕ(σ)R). By
Prop 7.0.1 this is equivalent to

lim
k→∞

dD(ϕ(z),ϕ(wk))−dD(0,ϕ(wk))< ln
(
αϕ(σ)R

)
By Prop 7.0.3,

dD(ϕ(z),ϕ(wk))−dD(0,ϕ(wk))< dD(z,wk)−dD(0,ϕ(wk))

= dD(z,wk)−dD(0,wk)+dD(0,wk)−dD(0,ϕ(wk))

By Prop 7.0.1, z ∈ E(σ ,R) is equivalent to

lim
k→∞

dD(z,wk)−dD(0,wk)< lnR

By Prop 7.0.2, dD(0,wk)−dD(0,ϕ(wk))→ lnαϕ(σ) as k → ∞. Therefore,

lim
k→∞

dD(ϕ(z),ϕ(wk))−dD(0,ϕ(wk))< lnR+ lnαϕ(σ)

and,
ϕ(E(σ ,R))⊂ E(η ,αϕ(σ)R)



8. Denjoy-Wolff Theorem

The following proposition and Denjoy-Wolff Theorem will allow us to give an generalisation of the
classification developed in the previous chapter on Möbius Transformations.

Proposition 8.0.1 Let φ : D 7→D be holomorphic, not an automorphism. Suppose there exists
τ ∈ D such that φ(τ) = τ . Then φ ◦n converges uniformly on compacta to the constant map
z 7→ τ .

Proof
Firstly suppose φ(0) = 0. Then by the Schwarz lemma we have that |φ(z)| ≤ |z|. Let
0 < r < 1 and M(r) = max|z|≤r |φ(z)|. Let δ = M(r)/r > 0. The previous note ensures δ < 1.

Let ψ = φ(rz)
M(r) . Clearly ψ fixes 0 and is holomorphic on D. Since r ∈ (0,1), ψ is continuous

on D. Thus by the Schwarz lemma |ψ(z)| ≤ |z|, which implies that,

|φ(z)|= M(r)
∣∣ψ( z

r

)∣∣≤ M(r)
r

|z| ≤ δ |z|

Thus by induction we have |φ ◦n(z)| ≤ δ n|z| ≤ δ n. Since δ < 1, φ ◦n tends to 0 uniformly on
rD and since r was arbitrary, φ ◦n converges uniformly to 0 on compact subsets of D.

If τ ̸= 0 then we apply the previous argument to ϕ = Tτ ◦φ ◦Tτ . Then ϕ is holomorphic, not an
automorphism and thus ϕ◦n converges to 0 uniformly on compacta. Hence φ ◦n = Tτ ◦ϕ◦n ◦ tτ
converges uniformly on compacta to Tτ(0) = τ .

Before we state the Denjoy Wolff Theorem, we make some remarks about Möbius Transformations.

Let T be a parabolic transformation in H. We found that one could conjugate this transform using
another automorphism D which takes the fixed point of T to ∞. Then D◦T ◦D−1 is a parabolic
transformation with a fixed point at ∞ and thus a translation. So (D◦T ◦D−1)◦n(z)→ ∞ as n → ∞

and thus T ◦n converges uniformly on compacta to z 7→ p where p is the fixed point of T .

Similarly let T be a hyperbolic transformation, and D be an automorphism conjugating the fixed
points of T to 0 and ∞. Then D◦T ◦D−1 is a hyperbolic transformation with fixed points at 0 and
∞ and thus a dilation. So (D◦T ◦D−1)◦n(z)→ ∞ (or 0 depending on the magnitude of the dilation)
as n → ∞ and thus T ◦n converges uniformly on compacta to z 7→ p where p is a fixed point of T
(the fixed point corresponding to 0 or ∞, which depends on the previous statement). We are now
ready to state the Denjoy Wolff Theorem.
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Theorem 8.0.2 — Denjoy-Wolff Theorem.
Let ϕ : D 7→ D be holomorphic and assume ϕ has no fixed points in D. Then there exists
τ ∈ ∂D unique such that αϕ(τ)≤ 1 and for every R > 0,

ϕ(E(τ,R))⊂ E(τ,R) (8.1)

Denjoy-Wolff Theorem Proof
Firstly for each z ∈ D, the sequence |ϕ◦n(z)| converges to 1. Suppose not, then there exists
a subsequence nk such that limk→∞ ϕ◦nk(z) = p ∈ D. Since elliptic transformation have
fixed points in D and from the previous discussion on uniform convergence, ϕ is not an
automorphism. By Proposition 7.0.3, the map N ∋ n 7→ d(ϕ◦n(z0),ϕ

◦(n+1)(z0)) is decreasing
and thus converges. Since p = limk→∞ ϕ◦nk(z),

d(p,ϕ(p)) = lim
k→∞

d(ϕ◦nk(z0),ϕ
◦(nk+1)(z0))

= lim
k→∞

d(ϕ◦nk+1(z0),ϕ
◦(nk+2)(z0))

= d(ϕ(p),ϕ◦2(p))

Since ϕ is not an automorphism, this is only possible if ϕ(p) = p, a contradiction. Therefore,
for every z ∈D, ϕ◦n(z) accumulates on the boundary of D. Let (wn)n∈N be a sequence defined
by wn+1 = ϕ(wn) and w1 = 0. Since limn→∞ |wn| = 1, there exists a subsequence nk such
that |ϕ(wnk)|> |wnk |. Thus up to extracting a converging subsequence, we can assume wnk

converges to τ ∈ D. By construction, ϕ(wnk) also converges to τ . Since |ϕ(wnk)| ≥ |wnk |,
then 1−|ϕ(wnk)|< 1−|wnk | and thus,

αϕ(σ) = lim
n→∞

1−|ϕ(wn)

1−|wn|
≤ 1

Therefore by Julia’s Lemma, for all R > 0

ϕ(E(τ,R))⊂ E(τ,R)

Suppose there exists τ ′ ∈ D that also satisfies the [8.1]. Let R,R′ ∈ R such that E(τ,R)∩
E(τ ′,R′) = z0, R and R′ exists and are well defined as E is an open disk in R2. Thus,

ϕ(z0) = ϕ(E(τ,R)∩E(τ ′,R′))

= ϕ(E(τ,R))∩ϕ(E(τ ′,R′))

Since ϕ is continuous,

⊂ ϕ(E(τ,R))∩ϕ(E(τ ′,R′))

⊂ E(τ,R)∩E(τ ′,R′)

= z0
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Which is a contradiction, z0 ∈ D and ϕ has no fixed points in D. Therefore τ is unique.

Finally we show that ϕ converges uniformly on compacta to z 7→ τ . By Vitali’s Theorem [9],
it suffices to show limn→∞ ϕ◦n(z0) = τ . Let z0 ∈ D. Then there exists R > 0 such that z0 ∈
E(τ,R). By [8.1], ϕ◦n(z0)∈E(τ,R). Since ϕ◦n(z0) accumulates on ∂D and E(τ,R)∩∂D= τ ,
limn→∞ ϕ◦n(z0) = τ .

Definition 8.0.1 Let ϕ : D 7→ D be holomorphic, not the identity.

1. If ϕ has a fixed point in D, then its unique fixed point is called the Denjoy-Wolff point
of ϕ .

2. If ϕ has no fixed points in D, then the unique point τ ∈ ∂D given by the Denjoy-Wolff
Theorem is the Denjoy-Wolff point of ϕ

Moreover, ϕ is

1. elliptic if its Denjoy-Wolff point is in D,
2. hyperbolic if its Denjoy-Wolff point τ belongs to ∂D and αϕ(τ) ∈ (0,1),
3. parabolic if its Denjoy-Wolff point τ belongs to ∂D and αϕ(τ) = 1.

This definition generalizes the classification made in the previous chapter from automorphisms to
holomorphic self maps.
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9. Preliminaries

Before we can study semigroups, we need some definitions from topology and algebra

9.1 Topology

Definition 9.1.1 — Topology.
A topology of a set X is a collection U of subsets of X called open sets such that,

1. An arbitrary union of elements of U is an element of U
2. A finite intersection of elements of U is an element of U
3. X and /0 are elements of U

A special type of subset of a topological space is a compact set,

Definition 9.1.2 — Compact Set.
Let X be a topological space. A set K ⊂ X is compact if any open cover has a finite sub cover.
More explicitly for any collection C = {U1,U2, ...} of open sets in X such that

K ⊂
⋃

U∈C

U

there exists a finite subset of C, {U1, ...,Uk} such that

K ⊂
k⋃

i=1

Ui

Two properties of topological spaces are as follows,

Definition 9.1.3 — Hausdorff.
Let X be a topological space. X is Hausdorff if for any two points x,y ∈ X such that x ̸= y,
there exists open sets Ux,Uy containing x,y respectively such that Ux ∩Uy = /0.

The definition for a topology above is stronger than required, so we reduced collection of open sets
known as a basis,

Definition 9.1.4 — Base Topology.
A base for a topology on X is a collection of open sets U ′ such that,
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1. A finite intersection of elements of U ′ is an element of U ′

2. X and /0 are elements of U ′

We can construct a topology from a base by taking arbitrary unions of elements of U ′. The
final property of topological spaces we are interested in is the size of a basis for a topological
space,

Definition 9.1.5 — Second countable.
Let X be a topological space. X is second countable if X has a countable base.

We can reduce the size of our collection of open sets further to a subbase,

Definition 9.1.6 — Subbase Topology.
A subbase for a topology on X is a collection of open sets U ′′ such that,

1. X and /0 are elements of U ′′

We can construct a base from a subbase by taking finite intersections of elements of U ′′. A subbase
allows us to abstract away the axioms for a topology, greatly simplifying the construction and
verification of topologies.

Definition 9.1.7 — Compact-Open Topology.
Let X ,Y be topological spaces and C(X ,Y ) be the collection of all continuous maps from
X to Y . Given a compact set K ⊂ X and an open set U ⊂ Y , let V (K,U) denote the set
{ f ∈ C(X ,Y ) | f (K) ⊂ U}. The collection V (K,U) is a subbase for the compact-open
topology on C(X ,Y )

This is clearly a subbase as V (K, /0) = /0 and V ( /0,Y ) =C(X ,Y ).

9.2 Algebra

Definition 9.2.1 — Semigroup.
A semigroup is a set X with an associative binary operation ∗ : X ×X 7→ X . Namely, for any
x,y,z ∈ X ,

(x∗ y)∗ z = x∗ (y∗ z)

While semigroups will lead to interesting results in the following sections, we will also want an
object with more structure that we can completely characterise.

Definition 9.2.2 — Group.
A group is a set X with a binary operation ∗ : X ×X 7→ X such that,

1. (Identity) e ∈ X such that x∗ e = e∗ x = x for all x ∈ X .
2. (Inverse) For all x ∈ X there exists y ∈ X such that x∗ y = y∗ x = e.
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3. (Associativity) For all x,y,z ∈ X , x∗ (y∗ z) = (x∗ y)∗ z.

The most general way of mapping between two (semi) groups is as follows,

Definition 9.2.3 — Homomorphism.
Let (G0,∗0) and (G1,∗1) be a (semi)group. A map f : G0 7→ G1 is a homomorphism if for any
x,y ∈ G0,

f (x∗0 y) = f (x)∗1 f (y)

A stronger map is an isomorphism, which basically says the two objects have the same group
structure.

Definition 9.2.4 — Isomorphism.
Let f be a homomorphism. Then f is an isomorphism if f is bijective (injective and surjective).

A special type of isomorphism is one from an object to itself,

Definition 9.2.5 — Automorphism.
Let f be an isomorphism. Then f is an automorphism if G0 = G1 from the definition of a
homeomorphism.



10. Semigroups in the Unit Disk

In the previous chapter we iterated Möbius transformations by repeatedly composing them. This is
essentially a map N∋ n 7→ϕ◦n. Now we extended this idea to real numbers and general holomorphic
self-maps of the unit disc. This chapter follows Chapter 8 of [4].

Definition 10.0.1 — Semigroup in the Unit Disk.
An algebraic semigroup (ϕt) of holomorphic self maps of the unit disk is a homomorphism
between the additive semigroup of non negative real numbers and the composition semigroup
of all holomorphic self maps of the unit disk. Namely,

1. ϕt ∈ Hol(D,D) for all t ≥ 0
2. ϕ0 = idD
3. ϕs+t = ϕs ◦ϕt for all s, t ≥ 0

Definition 10.0.2 — Continuity.
An algebraic semigroup (ϕt) is continuous if the map

[0,∞) ∋ t 7→ ϕt ∈ Hol(D,D)

where [0,∞) has the usual topology and Hol(D,D) has the compact-open topology.

Both of these definitions translate directly to Riemann surfaces.

Proposition 10.0.1 Let h be a biholomorphism from D onto a domain Ω of the complex
plane. If (φt), t ≥ 0 is a family of holomorphic self maps of Ω such that,

1. ϕ0 = idΩ

2. ϕs+t = ϕs ◦ϕt

3. [0,∞) ∋ t 7→ ϕt ∈ Hol(Ω,Ω) is continuous where [0,∞) has the unsual topology and
Hol(Ω,Ω) has the compact-open topology

Then ϕh
t = h−1 ◦ϕt ◦h is a continuous semigroup in D.

Proof
The proof is a direct verification of the semigroup conditions,

1. ϕt is the composition holomorphic functions



42 Chapter 10. Semigroups in the Unit Disk

2. t = 0 is the identity

ϕ
h
0 = h−1 ◦ϕ0 ◦h

= h−1 ◦ idΩ ◦h

= h−1 ◦h

= idD

3. Homomorphism condition

ϕ
h
t+s = h−1 ◦ϕt+s ◦h

= h−1 ◦ϕt ◦ϕs ◦h

= h−1 ◦ϕt ◦h◦h−1 ◦ϕs ◦h

= ϕ
h
t ◦ϕ

h
s

Holomorphic maps are continuous and the composition of continuous maps is continuous,
thus ϕh

t is continuous.



11. Groups in the Unit Disk

Definition 11.0.1 — Group in the Unit Disk.
An algebraic group (ϕt) of holomorphic self maps of the unit disk is an algebraic semigroup
in D such that ϕt ∈ Aut(D,D) for all t ≥ 0.

Then we define ϕ−t = (ϕt)
−1

The condition of all iterates being automorphisms is a stronger condition than necessary. We can
give an equivalent condition as follows.

Theorem 11.0.1 Let (ϕt) be a semigroup in D. (ϕt) is a group in D iff there exists t > 0 such
that ϕt ∈ Aut(D,D).

Proof
The forward direction follows from the definition of an algebraic group.

(⇐) Let (ϕt) be a semigroup in D such that ϕt0 ∈ Aut(D,D). Let 0 < s < t0, then

1. Surjective
D= ϕt0(D) = ϕs(ϕt0−s(D))⊂ ϕs(D)

2. Injective. Let u,v ∈ D be distinct. Since ϕt0 ∈ Aut(D,D), ϕt0(u) ̸= ϕt0(v). Suppose
ϕs(u) = ϕs(v),

ϕt0(u) = ϕt0−s(ϕs(u))

= ϕt0−s(ϕs(v))

= ϕt0(v)

Which contradicts ϕt0 is injective. Thus ϕs is injective

If s > t0 then s = nt0 + r for some integer n and 0 < r < t0, thus the same results apply to ϕs

and therefore (ϕt) is an algebraic group.

Since an element of an algebraic group in an automorphism, we can classify each iterate by their
fixed points. We won’t prove it here, but a fixed point of one iterate is a common fixed point of all
iterates, thus we have the following classification.

Theorem 11.0.2 — Classification of Groups [7].
Let (ϕt) be a non trivial group in D. Then (ϕt) has one of the three following forms,
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1. (Elliptic) There exists τ ∈ D (Denjoy-Wolff point) and ω ∈ R−{0} such that,

ϕt(z) =
(e−iωt −|τ|2)z+ τ(1− e−iωt)

τ̄(e−iωt −1)z+1−|τ|2e−iωt

2. (Parabolic) There exists τ ∈ ∂D (Denjoy-Wolff point) and α ∈ R−{0} such that,

ϕt(z) =
(1− iαt)z+ iαtτ
−iατ̄tz+1+ iαt

3. (Hyperbolic) There exists τ,σ ∈ ∂D with τ being the Denjoy-Wolff point, σ the other
fixed point and α ∈ R−{0} such that,

ϕt(z) =
(σ − τeαt)z+ τσ(eαt −1)

(1− eαt)z+σeαt − τ

Example 11.1 — Parabolic.
Let τ = 1

2 and α = 1. Iterating ϕt , on the upper half plane the points are translated along horoballs
at the fixed point, moving away from one side of the fixed point towards the other.



45

Let τ = i and α = 1. Iterating ϕt , on the upper half plane the points are translated along horoballs
at the fixed point. Since the fixed point is at ∞, the horoballs are horizontal lines, so the points are
simply translated in the plane.
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Example 11.2 — Elliptic.
Let τ = 0.5 and ω = π

2 . Iterating ϕt , the points orbit around the fixed point, 0.5.
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Example 11.3 — Hyperbolic.
Let σ = 0, τ = i and α = 1. Iterating ϕt , the points move away from one fixed points towards the
other along geodesics, similarly to the behaviour of Hyperbolic Möbius transformations
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Let σ = 1, τ =−1 and α = 1.
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12. On other Riemann Surfaces

Definition 12.0.1 — Riemann Surface.
A connected, Hausdorff, second countable topological space S is a Riemann Surface if the
exists an open covering {Uα} of S, continuous maps ψα : Uα 7→ C such that ψα(Uα) is an
open subset of C and ψα : Uα 7→ ψα(Uα) is a homeomorphism and such that for every α,β
with Uα ∩Uβ ̸= /0 the map,

ψα ◦ψ
−1
β

: ψβ (Uα ∩Uβ ) 7→ ψα(Uα ∩Uβ )

is holomorphic.

The family {Uα ,ψα} is called a holomorphic atlas for S and ψα is a holomorphic chart of S on
Uα . We defined holomorphic maps using the Cauchy Riemann Equations, and we now extend the
notion of holomorphic to general maps of surfaces,

Definition 12.0.2 — Holomorphic.
A continuous map f : S1 7→ S2 between two Riemann surfaces S1,S2 is holomorphic if for
every p ∈ S1 there exists a holomorphic chart (U,ψ) of S1 with p ∈ U and a holomorphic
chart (V,η) of S2 with f (p) ∈V such that the function

η ◦ f ◦ψ
−1 : ψ(U ∩ f−1(V )) 7→ η(V )

is holomorphic.

Before we discuss semi groups in the unit disk in detail, we briefly discuss other Riemann surfaces
to justify this investigation. The following theorem allows us to reduce the space of Riemann
surfaces down to 3 surfaces unique up to biholomorphism.

Theorem 12.0.1 — Uniformization Theorem [1].
Every simply connected Riemann surface is biholomorphic to either the unit disk D, or the
complex plane C, or the Riemann sphere C∞.

We can give a complete classification of semi groups in C and C∞.

Theorem 12.0.2 — Semigroups in C [4].
Let (ϕt) be a non trivial continuous semigroup in C. Then there exists an affine transformation
T in C such that either,
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1. T ◦ϕt ◦T−1(z) = z+ it, or
2. T ◦ϕt ◦T−1(z) = eatz, for some non zero a ∈ C

In particular, every continuous semigroup in C is a continuous group.

Theorem 12.0.3 — Semigroups in C∞ [4].
Let (ϕt) be a non trivial semigroup in C∞. Then there exists a Mobius transformation T such
that either,

1. T ◦ϕt ◦T−1(z) = z+ it, or
2. T ◦ϕt ◦T−1(z) = eatz, for some non zero a ∈ C

In particular, every continuous semigroup in C∞ is a continuous group.

Thus the unit disk is the most interesting domain in which to study semi groups, in particular semi
groups which are not groups since we have a complete classification of groups in the unit disk.



VI

13 Holomorphic Models . . . . . . . . . . . . . . . . 54

14 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . 63
Articles
Books

Models



13. Holomorphic Models

This chapter follows Chapter 9 of [4]. The idea behind models is to model the dynamic behaviour
of a semigroup in D using a group on a Riemann surface. A candidate for models is the property of
semi conjugation,

Definition 13.0.1 Let (φt) be a semigroup in D. Let Ω be a Riemann Surface and (ψt) a
semigroup in Ω. (φt) is semi conjugated to (ψt) if there exists a holomorphic map g : D 7→ Ω

such that for all t ≥ 0,

D D

Ω Ω

φt

g g

ψt

is a commutative diagram.

To motivate the definition of a model, lets investigate semi conjugation for two similar semi groups.
Let ψt(z) = z+ it, (ψt) is a group of automorphisms of C. Let C1 : D 7→ H = {z ∈ C | Re(z)> 0}
be the holomorphic map defined by C1(z) = 1+z

1−z . Thus we define the following two semi-groups
in D, φt , φ̃t : D 7→ D defined by φt =C−1

1 ◦ψt ◦C1 and φ̃t =C−1
1 (−iψt(iC1(z))). By construction φt

is a non elliptic group in D and φ̃t is a non elliptic semigroup in D that is not a group. Both semi
groups are conjugated to ψt using the maps z 7→C1(z) and z 7→ iC1(z) respectively. Therefore (φt)
being semi conjugated to (ψt) is not enough to capture the dynamical behaviour of the semigroup.

Definition 13.0.2 — Semi-Model.
Let (φt) be a semigroup in D. Let Ω be a Riemann Surface, h : D 7→ Ω holomorphic and
(ψt) a continuous group in Ω such that (φt) is semi conjugated to (ψt) through h, namely the
following diagram is commutative,

D D

Ω Ω

φt

h h
ψt

(13.1)

along with the condition

⋃
t≤0

ψt ◦h(D) = Ω (13.2)
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Then the triple (Ω,h,ψt) is a semi-model for (φt).

If h is injective, then (Ω,h,ψt) is a model for (φt). Firstly we prove some simple properties of
(semi)models,

Proposition 13.0.1 Let (φt) be a semigroup in D and (Ω,h,ψt) a semi model for (φt). Then

1. ψt ◦h(D)⊂ h(D) for all t ≥ 0. In particular, if (Ω,h,ψt) is a model, then φt = h−1◦ψt ◦h
on h(D).

2. If (φt) is elliptic, (ψt) has a common fixed point.

Proof
1) Using the commutative diagram 1,

ψt ◦h(D) = h◦φt(D)⊂ h(D)

If (Ω,h,ψt) is a model, h is injective and thus bijective on its image, h(D). Thus from the
commutative diagram (13.1) it follows that φt = h−1 ◦ψt ◦h on h(D).

2) If (φt) is elliptic the there exists z0 ∈ D such that φt(z0) = z0, thus

ψt ◦h(z0) = h◦φt(z0) = h(z0)

Thus h(z0) is a fixed point of (ψt)

Let φt(z) =C−1
1 (etC1(z)). (φt) is a hyperbolic group in D and it has a model (H,C1,z 7→ etz). We

can construct another model for (φt) using h : D 7→ Sπ = {z ∈ C | 0 < Re(z)< π} defined by

h(z) = i lnC1(z)+
π

2

where ln is the principal branch of the logarithm. Then (Sπ ,h,z 7→ z+ it) is a model for (φt).
Therefore a semigroup may have many different (semi) models, so to establish a unique model for
each semigroup, we need a way of mapping between (semi) models.

Definition 13.0.3 Let (φt) be a semigroup in D. Let (Ω,h,ψt) and (Ω̃, h̃, ψ̃t) be two semi
models for (φt). A morphism of holomorphic semi models η̂ : (Ω,h,ψt) 7→ (Ω̃, h̃, ψ̃t) is a
holomorphic map η : Ω 7→ Ω̃ such that the following are commutative diagrams.

D Ω

Ω̃

h̃

h

η

Ω Ω

Ω̃ Ω̃

ψt

η η

ψ̃t

(13.3)

Example 13.1 — Identity Morphism.
Let (φt) be a semigroup in D. Let (Ω,h,ψt) be a semi model for (φt). Let idΩ : Ω 7→ Ω be the
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identity map, then

idΩ ◦h = h idΩ ◦ψt = ψt = ψt ◦ idΩ

Therefore ˆidΩ : (Ω,h,ψt) 7→ (Ω,h,ψt) is a morphism of semi models.

Example 13.2 — Composition of Morphisms.
Let (φt) be a semigroup in D. Let (Ω1,h1,ψ1

t ), (Ω
2,h2,ψ2

t ), (Ω
3,h3,ψ3

t ) be semi models for (φt).
Suppose η̂1 : (Ω1,h1,ψ1

t ) 7→ (Ω2,h2,ψ2
t ) and η̂2 : (Ω2,h2,ψ2

t ) 7→ (Ω3,h3,ψ3
t ) are morphisms of

semi models, then we have a natural composition of semi model morphisms, η̂ : (Ω1,h1,ψ1
t ) 7→

(Ω3,h3,ψ3
t ) defined by,

η̂ = η̂2 ◦ η̂1 = η̂2 ◦η1

The definition of a semi model morphism gives us a lot of structure, which leads to the following
two propositions,

Proposition 13.0.2 Let (φt) be a semigroup in D. Let (Ω,h,ψt) and (Ω̃, h̃, ψ̃t) be two semi
models for (φt). If η̂ : (Ω,h,ψt) 7→ (Ω̃, h̃, ψ̃t) is a morphism of semi models, then η : Ω 7→ Ω̃

is surjective.

Proof
Using the commutative diagrams for semi models and morphisms,

Ω̃ =
⋃
t≤0

ψ̃t ◦ h̃(D) (13.2)

=
⋃
t≤0

ψ̃t ◦η ◦h(D) (13.3 L)

=
⋃
t≤0

η ◦ψt ◦h(D) (13.3 R)

= η(Ω) (13.2)

The last equality follows from the continuity of η , as η is holomorphic.

A surprising result of the definition for semi models morphisms is the uniqueness of the morphisms,

Proposition 13.0.3 Let (φt) be a semigroup in D. Let (Ω,h,ψt) and (Ω̃, h̃, ψ̃t) be two semi
models for (φt). Suppose η̂ , µ̂ : (Ω,h,ψt) 7→ (Ω̃, h̃, ψ̃t) are two morphisms of semi models,
then η̂ = µ̂ .

Proof
Equivalently, it suffices to show η(z) = µ(z) for all z ∈ Ω. The idea is to use the first
commutative diagram of the morphism to swap η and µ , more explicitly η ◦h = h̃ = µ ◦h.
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Let z ∈ Ω, by the union condition, there exists t ≤ 0 and w ∈ D such that z = ψt ◦h(w),

η(z) = η ◦ψt ◦h(w)

= ψ̃t ◦η ◦h(w)

= ψ̃t ◦ h̃(w)

= ψ̃t ◦µ ◦h(w)

= µ ◦ψt ◦h(w)

= µ(z)

Similarly to groups we can define a more restricted morphism,

Definition 13.0.4 — Isomorphism.
Let (φt) be a semigroup in D. Let (Ω,h,ψt) and (Ω̃, h̃, ψ̃t) be two semi models for (φt).
If η̂ : (Ω,h,ψt) 7→ Ω̃, h̃, ψ̃t) is a morphism of semi models and there exists a morphism of
semigroups m̂u : (Ω̃, h̃, ψ̃t) 7→ (Ω,h,ψt) such that µ̂ ◦ η̂ = idΩ and η̂ ◦ µ̂ = id

Ω̃
then η̂ is an

isomorphism of semi models.

The previous proposition allows us to give some equivalent definitions of semi model isomorphism.

Theorem 13.0.4 Let (φt) be a semigroup in D. Let (Ω,h,ψt) and (Ω̃, h̃, ψ̃t) be two semi
models for (φt). Let η̂ : (Ω,h,ψt) 7→ Ω̃, h̃, ψ̃t) be a morphism of semi models. Then the
following are equivalent,

1. η is a biholomorphism.
2. η̂ is an isomorphism of semi models
3. There exists a morphism of semi models µ : (Ω̃, h̃, ψ̃t) 7→ (Ω,h,ψt)

Proof
Since η has a holomorphic inverse, this is the morphism in the other direction and thus
(1)→ (2). By definition (2)→ (3). Suppose (3) holds, then µ̂ ◦ η̂ is an endomorphism of
(Ω,h,ψt) and thus µ ◦η = idΩ. Therefore η is biholomorphic with holomorphic inverse µ ,
(3)→ (1).

The final proposition before we prove the main result gives us a morphism from a model to any
semi model,

Proposition 13.0.5 Let (φt) be a semigroup in D. Let (Ω,h,ψt) be a model for (φt). Suppose
(Ω̃, h̃, ψ̃t) is a semi model for (φt), then there exists a unique morphism of semi models
η̂ : (Ω,h,ψt) 7→ Ω̃, h̃, ψ̃t).

Proof
Uniqueness follows from Proposition 16.0.3. Let Ωt = ψ−t ◦h(D) and ηt : Ωt 7→ Ω̃ be defined
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by ηt = ψ̃−t ◦ h̃◦h−1|h(D) ◦ψt .

Let 0 ≤ t ≤ s and z ∈ Ωt ∩Ωs, then there exists w ∈ D such that z = φ−t ◦h(w) = φ−s ◦h(w)

ψs ◦h(w) = ψt ◦h(w)

h◦φs(w) = h◦φt(w)

Since h is injective,

φs(w) = φt(w)

h̃◦φs(w) = h̃◦φt(w)

ψ̃s ◦ h̃(w) = ψ̃t ◦ h̃(w)

Thus ψ̃−s ◦ h̃(w) = ψ̃−t ◦ h̃(w) which be useful next. Now we show that ηt(z) = ηs(z),

ηt(z) = ψ̃−t ◦ h̃◦h−1|h(D) ◦ψt(z)

= ψ̃−t ◦ h̃◦h−1|h(D) ◦ψt ◦φ−t ◦h(w)

= ψ̃−t ◦ h̃(w)

= ψ̃−s ◦ h̃(w)

= ψ̃−s ◦ h̃◦h−1|h(D) ◦ψs ◦φ−s ◦h(w)

= ψ̃−s ◦ h̃◦h−1|h(D) ◦ψs(z)

= ηs(z)

By definition, ∪t≤0Ωt = Ω. Let η : Ω 7→ Ω̃ be defined by η(z) = ηt(z) for some t ≥ 0 such
that z ∈ Ωt . Therefore it suffices to show the two morphism diagrams commute.

Let z ∈ Ω. Let t ≥ 0 and w ∈ D such that z = ψ−t ◦h(w).

η ◦h(w) = ψ̃−t ◦ h̃◦h−1|h(D) ◦ψt ◦h(w)

= ψ̃−t ◦ h̃◦h−1|h(D) ◦h◦φt(w)

= ψ̃−t ◦ h̃◦φt(w)

= ψ̃−t ◦ ψ̃t ◦ h̃(w)

= h̃(w)

Similarly for the second diagram,

ψ̃t ◦η(z) = ψ̃t ◦ ψ̃−t ◦ h̃◦h−1|h(D) ◦ψt(z)

= ψ̃−t ◦ ψ̃t ◦ h̃◦h−1|h(D) ◦ψt(z)

= ψ̃−t ◦ h̃◦φt ◦h−1|h(D) ◦ψt(z)

= ψ̃−t ◦ h̃◦h−1|h(D)ψt ◦ψt(z)

= η ◦ψ(z)

Corollary 13.0.6 Models of a semigroups (φt) are unique up to semi model isomorphism
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The previous proposition gives a morphism in both directions, so by the characterisation of semi
model isomorphism, the models are isomorphic.

Thus if we consider a partial ordering on the semi models of a semigroup defined by A ≥ B iff
there exists a morphism of semimodels η̂ : A 7→ B, then a model, if it exists, is the unique maximal
element of the semi models of the semigroup.

We are now ready to prove the main result of this section

Theorem 13.0.7 Let (φt) be a semigroup in D. Then there exists a unique (up to semimodel
isomorphism) model (Ω,h,ψt) for (φt).

Proof
Uniqueness follows from the previous corollary, so we proceed with existence. The outline of
the proof is as follows,

1. Construct a topological space Ω and show it is a Riemann Surface
2. Construct an intertwining map h : D 7→ Ω and show it is injective
3. Construct an algebraic group (ψn) in Ω

4. Show that (Ω,h,ψt) forms a model for (φn).

1) Firstly we construct the topological space Ω. Let [0,∞) have the discrete topology. Define
a relation on D× [0,∞) as (z, t)∼ (w,s) iff there exists u ∈ [0,∞) such that u ≥ max{t,s} and
φu−t(z) = φu−s(w). ∼ is an equivalence relation, each of the properties follow from = being
an equivalence relation. Let Ω be the quotient space D× [0,∞)/∼ and π be the identification
map.

To show Ω is a Riemann Surface, we need a holomorphic atlas {(ht ,Ωt)} and we need to
show that Ω is second countable and path connected. Fix t ≥ 0 and define ht : D 7→ Ω by
ht(z) = π((z, t)). ht is injective as φt is injective. ht is continuous by the continuity of π . To
show ht is an open map let U ⊂ D be open. A set in the quotient space is open if its preimage
is open, so we need to check if π−1(π((U, t))) is open in D× [0,∞). As this is a product space
it suffices to check that the projections are open. The projection onto [0,∞) is clearly open as
[0,∞) has the discrete topology. For the projection onto D, note {z ∈D | (z, t) ∈ [(U, t)]}=U
as φn is injective. Thus the projection π−1(π((U, t))) onto D is the union of open sets, which
is open. Therefore ht |h(D) is a homeomorphism.

Define Ωt = ht(D). Fix s ≥ 0. Clearly (φt−s, t)∼ (z,s) for all t ≥ s. Thus,

hs = ht ◦φt−s

In particular,

Ωs = hs(D) = ht ◦φt−s(D)⊂ ht(D) = Ωt

Therefore Ω = ∪t∈NΩt , and is therefore second countable and path connected. It follows that
{(ht ,Ωt)} is a holomorphic atlas for Ω and Ω is a Riemann Surface.

2) Let h = h0 : D 7→ Ω. h is injective by construction.
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3) Define ψs : Ω 7→ Ω by

φs(z) = ht−s ◦h−1
t z ∈ Ωt

Fix s ≥ 0 then for all t ≥ s,

ht−s ◦h−1|Ωs = ht−s ◦h−1
t ◦hs ◦h−1

s

= ht−s ◦φt−s ◦h−1
s

= h◦h−1
s

Thus the map ψs is well defined. Since h is injective, ψ is injective.

Let w ∈ Ω and fix s ≥ 0. Let t ≥ s such that w ∈ Ωt−s then there exists u ∈ D such that
w = ht−s(u). Let z = ht(u).

w = ht−s(u)

= ht−s ◦h−1
t (z)

= ψs(z)

Therefore ψs is injective. Finally we need to show that (ψn) forms an algebraic group. It
suffices to show that ψt ◦ψs = ψt+s. Let t,s ≥ 0 and z ∈ Ω. There exists u ≥ t + s such that
s ∈ Ωu. Then z = hu(w) for some w ∈ D.

ψt ◦ψs(z) = hu−t ◦h−1
u ◦hu−s ◦h−1

u (z)

= hu−t ◦h−1
u ◦hu−s ◦h−1

u ◦hu(w)

= hu−t ◦h−1
u ◦hu−s(w)

= hu−t ◦h−1
u ◦hu ◦φs(w)

= hu−t ◦φs(w)

= hu ◦φt ◦φs(w)

= hu ◦φt+s(w)

= hu−(t+s)(w)

= hu−(t+s) ◦h−1
u (z)

= ψt+s(z)

The continuity of (ψn) follows from the continuity of (φn) (see [4]). Therefore (ψn) is an
algebraic group in Ω.

4) Let t ≥ 0, since h(D)⊂ Ωt ,

ψt ◦h = h◦h−1
t ◦h = h◦φt

Since ψ−t = ht ◦h−1 on h(D),

⋃
t≥0

ψ−t ◦h(D) =
⋃
t≥0

ht(D) = Ω
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Therefore (Ω,h,ψn) is a model for (φn).

We can extend the Denjoy Wolff theorem to continuous semigroups [4], and use this to classify
semigroups similarly to holomorphic self maps,

Theorem 13.0.8 Let (φt) be a non trivial semi groups in D. Then, all iterates different from
the identity have the same Denjoy-Wolff point τ ∈ D.

Theorem 13.0.9 Let (φn) be a semigroup in D. Then,

1. (φn) is the trivial semigroup iff (φn) has a holomorphic model (D, idD,z 7→ z)
2. (φn) is a group of elliptic automorphisms iff (φn) has a holomorphic model (D,h,z 7→

e−iθ z), θ ∈ R−{0}
3. (φn) is elliptic, not a group iff (φn) has a holomorphic model (C,h,z 7→ e−λ tz), λ ∈ C

such that Reλ > 0
4. (φn) is hyperbolic iff (φn) has a holomorphic model (S π

λ
,h,z 7→ z+ it), λ > 0

5. (φn) is parabolic of positive hyperbolic step iff (φn) has a holomorphic model either of
the form (H,h,z 7→ z+ it) or (H−,h,z 7→ z+ it).

6. (φn) is parabolic of zero hyperbolic step iff (φn) has a holomorphic model (C,h,z 7→
z+ it)



14. Conclusion

In this report we have studied the geometric properties of the Poincaré disk and Upper half plane
with the hyperbolic metric. We studied the dynamics of iterating Möbius transformations and
characterised the different types. We introduced algebraic semigroups and models, one of the tools
for characterising semigroups. Further research into this area could include studying other tools for
characterisation such as infinitesimal generators which has applications to differential equations.
Additionally the reference for this report ([4]) took an analytic approach to defining semigroups,
a more abstract approach using using tangent bundles of intervals would allow the use of more
powerful mathematical techniques as these spaces have been thoroughly studied, see [3].



Bibliography

Articles
[1] W. Abikoff. “The Uniformization Theorem”. In: The American Mathematical Monthly 88(8)

(1981), pages 574–592 (cited on page 51).
[3] M. F. Atiyah. “Vector Bundles Over an Elliptic Curve”. In: Proceedings of the London

Mathematical Society s3-7.1 (1957), pages 414–452 (cited on page 62).

Books
[2] Lars Ahlfors. Complex Analysis. McGraw-Hill, 1979, page 134 (cited on page 6).
[4] Filippo Bracci, Manuel D. Contreras, and Santiago Díaz-Madrigal. Continuous Semigroups

of Holomorphic Self-maps of the Unit Disk. Springer, 2020 (cited on pages 5, 6, 41, 51, 52,
54, 60–62).

[5] Manfredo do Carmo. Differential Geometry of Curves and Surfaces. 2nd edition. Dover,
2016, pages 267–278 (cited on page 12).

[6] Alfred Gray. Modern Differential Geometry of Curves and Surfaces with Mathematica.
3rd edition. Chapman and Hall/CRC, 2006, pages 504–507 (cited on page 12).

[7] Linda Keen and Nikola Lakic. Hyperbolic Geometry from a Local Viewpoint. London
Mathematical Society, 2007, pages 46–50 (cited on pages 23, 26, 27, 43).

[8] Roger Penrose. The Road To Reality: A Complete Guide to the Laws of the Universe. Jonathan
Cape, 2004, page 45 (cited on page 5).

[9] H. L. Royden and P. M. Fitzpatrick. Real Analysis. 4th. Pearson Education Inc, 2010, page 94
(cited on page 36).

[10] Walter Rudin. Real and Complex Analysis. 3rd. McGraw–Hill Book Co, 1987, page 293
(cited on page 10).




	Part I — Poincaré Model
	1 Introduction
	1.1 History
	1.2 Complex Analysis

	2 Hyperbolic Metric
	3 Geometry
	3.1 Geodesics
	3.2 Triangles


	Part II — Upper Half Plane
	4 Hyperbolic Metric
	5 Geometry
	5.1 Geodesics
	5.2 Triangles


	Part III — Möbius Transformations
	6 Classification
	6.1 Parabolic
	6.2 Elliptic
	6.3 Hyperbolic


	Part IV — Denjoy Wolff Theorem
	7 Julia's Lemma
	8 Denjoy-Wolff Theorem

	Part V — Semigroups
	9 Preliminaries
	9.1 Topology
	9.2 Algebra

	10 Semigroups in the Unit Disk
	11 Groups in the Unit Disk
	12 On other Riemann Surfaces

	Part VI — Models
	13 Holomorphic Models
	14 Conclusion
	Bibliography
	Articles
	Books

	Index


