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Abstract

In 2021, Jessica Purcell and Daniel Mathews introduced a geometric interpretation of the vectors dual
to the gluing vectors [MP22]. These extend the Neumann-Zagier matrix to one which is a symplectic
matrix (up to factor 2).

In 1985, as part of his PhD dissertation [Wee85], Jeffrey Weeks developed SnapPea. This is a col-
lection of algorithms written in C for computing with hyperbolic 3-manifolds [Wee03]. This is currently
maintained as the SnapPy [Cul+23] python package on GitHub. We develop and implement an algorithm
for constructing oscillating curves dual to the gluing curves and extending the Neumann-Zagier matrix
to one which is symplectic (up to factors of 2) in C using SnapPy.
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1 Introduction
A 3-manifold is a topological space which locally looks like the familiar 3-dimensional Euclidean space R3. A
central topic to the study of 3-manifolds is the geometric structures which can be put on manifold. Thurston’s
geometrisation conjecture states that certain 3-manifolds each have unique geometric structures which can be
associated with them. Thurston proposed this conjecture in 1982 [Thu82]. The analogue for 2-dimensional
manifolds states that certain 2-manifolds fall into either having spherical, Euclidean or hyperbolic geometry.
For 3-manifolds, Thurston decomposes each manifold in a natural way into 8 types of geometric structure.
A key tool for working with 3-manifolds is triangulations, in particular ideal triangulations.

An ideal tetrahedron is a tetrahedron with each vertex removed. An ideal triangulation of a 3-manifold M
is a gluing of ideal tetrahedra which results in a manifold homeomorphic to M . The removed vertices give
triangles at each vertex, called cusp triangles. The cusp triangles correspond to the boundary of M , and
the gluing on the faces of the tetrahedra induce a gluing on the edges of each triangle. This results in a
triangulation of the boundary of M . On each boundary component, we have a collection of curves called
edge curves. These curves give rise to vectors which are the coefficients of the gluing equations. Thurston
showed a triangulation admits a hyperbolic structure iff the tetrahedra satisfy the gluing equations [Thu80].
We also a collection of simple closed curves which form a basis for the fundamental group of the boundary
component. These curves give rise to vectors which are the coefficients of the cusp (or completeness) equa-
tions. Thurston also showed that a triangulation which admits a hyperbolic structure, admits a complete
hyperbolic structure iff the tetrahedra statisfy the completeness equations [Thu80].

The study of 3-manifolds is closely related to Knot Theory. A knot is a smooth embedding of the circle in the
3-sphere, and a link is a smooth embedding of a disjoint union of circles into the 3-sphere. The complement
of a knot or link in the 3-sphere is a 3-manifold. Thurston showed that if a knot is not a satellite or torus
knot, its complement admits a hyperbolic structure [Thu80]. Thurston also showed that knot complements
which admit a hyperbolic structure admit a complete hyperbolic structure [Thu80]. In this case the complete
hyperbolic structure is unique, a result known as Mostow-Prasad rigidity [Mos86; Pra73]. Thurston showed
that near the complete, hyperbolic structure there is a ”neighbourhood” of hyperbolic structures which are
not complete except the unique complete one [Thu80]. In the 1980s, Neumann and Zagier were investigating
how the volume of the manifold changes in this neighbourhood [NZ85]. They developed a symplectic form,
which arises from properties of the triangulation. The Neumann and Zagier also formed a matrix with rows
coming from the coefficients of the gluing and completeness equations. They extended this matrix to one
which is symplectic up to factors of 2, using the Gram-Schmidt algorithm. In 2022, Mathews and Purcell
developed oscillating curves which give rise to vectors that extend the Neumann-Zagier matrix to one which
is symplectic up to factors of 2 [MP22]. This symplectic matrix forms an equation which gives integer so-
lutions to the gluing and cusp equations, modulo a factor of 2. This equation was considered by Neumann,
who showed integer solutions exist [Neu92]. In 2021, Howie, Mathews and Purcell showed integer solutions
can be obtained by adding multiples of explicit vectors [HMP21].

SnapPy [Cul+23] is a python package written in C which can perform various calculations with 3-manifolds.
SnapPy can triangulate knot and link complements drawn by the user using the Plink library and contains
a large database of 3-manifolds. The aim of this thesis is to design and implement an algorithm in C
to construct oscillating curves dual to the edge curves on knot and link complements, and the associated
symplectic matrix. We begin by introducing some preliminaries of Knot Theory in Section 2. Then we
discuss the notion of Lambda Lengths in Section 3. In Section 4, we give a brief summary of oscillating
curves and their properties as described in [MP22]. Section 5 covers our approach to constructing oscillating
curves explicitly, which is new to this paper. Section 6 goes into the technical details of representing the
objects defined in the process of constructing oscillating curves. Finally, in Section 7 we give an example of
the algorithm on the Figure 8 knot and L6a4 Link.
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2 Knot Theory Preliminaries
We begin by outlining the basic definitions of knot theory and tetrahedral decomposition. This exposition
and the more technical details can be found in Hyperbolic Knot Theory [Pur20] which is based on the work
of Thurston [Thu80].

Definition 2.1 (Manifold). Let M be a hausdorff, second countable topological space. M is an n-dimensional
manifold if there exists a collection

{(Uα, φα) | α ∈ J, Uα ⊂M open, φα : M → R
n},

such that {Uα | α ∈ J} is an open cover for M and,

φβ ◦ φ−1
α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ)

is a homeomorphism.

We define Euclidean half space by

R
n
+ = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}.

A manifold with boundary is defined similarly to manifolds, where instead locally a manifold with boundary
looks like Euclidean half space.

Definition 2.2 (Manifold with boundary). Let M be a hausdorff, second countable topological space. M is
an n-dimensional manifold with boundary if there exists a collection

{(Uα, φα) | α ∈ J, Uα ⊂M open, φα : M → R
n
+},

such that {Uα | α ∈ J} is an open cover for M and,

φβ ◦ φ−1
α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ)

is a homeomorphism.

We have the boundary of Rn
+, denoted ∂Rn

+, is given by

∂Rn
+ = {(x1, . . . , xn) ∈ Rn | xn = 0}.

The boundary of M , denoted ∂M , is defined as

∂M =
⋃
α∈J

φ−1
α (∂Rn

+ ∩ φα(Uα)).

Definition 2.3 (Knots and Links). A knot K ⊂ S3 is a subset of points homeomorphic to a circle S1 under
a piecewise linear (PL) homeomorphism.
A link is a subset of S3 PL homeomorphic to a disjoint union of copies of S1.

S3 is the unit sphere in R4 consisting of the points (x, y, z, w) such that x2 + y2 + z2 + w2 = 1.

Definition 2.4 (Knot Complement). The knot complement of a knot K ⊂ S3 is S3 −K.

Notice the knot complement is a 3-manifold with boundary consisting of the knot. We are interested in
triangulated 3-manifolds, since they give a concrete model for computation.
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2.1 Tetrahedral Decomposition
Definition 2.5. A polyhedron is a closed 3-ball whose boundary is labelled with a finite graph, containing
a finite number of vertices and edges, so that complementary regions, which are called faces, are simply
connected.

An ideal polyhedron is a polyhedron with all vertices removed.

Example 2.6 (Figure-8 Knot). We construct an ideal triangulation of the figure 8 knot complement using
polyhedral decomposition. The full details for this construction can be found in [Pur20]. Starting with
S3 −K, we split it into two polyhedra.

Figure 1: Figure 8 Knot

The polyhedral decomposition of the figure 8 knot contains two polyhedra. We imagine one polyhedron lying
above the knot and another below. Then we expand the polyhedra, they will meet at the regions cut out by
the knot, labelled below A,B,C,D,E and F .

A

B

D
C E

F

Figure 2: Faces of the figure 8 knot complement

The polyhedra will be represented as a 4-valent graph in the plane. The faces of the polyhedra meet at edges
of the knot, and there is one edge in the graph for each crossing of the knot. Edges come from arcs that
connect two strands of the diagram at a crossing. These are called crossing arcs. Initially we draw 4 edges
for each crossing, with the edge going from the overcrossing to undercrossing or vice versa. This will make
it easier to visualize which edges will bound the faces. Orientations on the edges can be chosen to run in
either direction, as long as we are consistent with the orientations corresponding to the same edge. A choice
of orientations is sketched below,
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A

B

D
C E

F

Figure 3: Edges of the figure 8 knot complement

Shrink the knot along ideal vertices on the top polyhedron. Notice the edges of the polyhedron have endpoints
on the knot. Since the endpoints are contained in the knot, they are not in the knot complement S3 −K.
Hence, we need ideal polyhedra, which have the vertices removed. Similarly, since the knot is not in the
manifold, we can shrink along the strands of the knot. We start with the top polyhedron. Focus on a
neighbourhood of a crossing. As we shrink the knot between the 4 arrows that go from the overcrossing to
the undercrossing or vice versa, the pairs of edges will merge into one edge. This leaves us with two edges
running from the overcrossing to the undercrossing or vice versa (Figure 4). Now shrink the knot along
the strands between crossings. This collapses the pair of edges into one edge running from one crossing to
another. Now we are left with a graph consisting of the edges of the top polyhedron (Figure 5).

A

B

D
C E

F

Figure 4: Isotopic edges in the top polyhedron

Following the same method as with the top polyhedron, shrink the knot along ideal vertices on the bottom
polyhedron. Since the bottom polyhedron is beneath the knot, we need to flip each crossing of the knot,
to view the knot from the inside of the polyhedron. When we flip the knot each overcrossing becomes an
undercrossing and vice versa. This means we need to also flip the edge directions, in this case from the
overcrossing to the undercrossing. This gives a polyhedral decomposition of the figure 8 knot.

Definition 2.7 (Ideal Triangulation). Let M be a 3-manifold. A topological ideal triangulation of M is
a combinatorial way of gluing ideal tetrahedra (tetrahedra with each vertex removed) so that the result is
homeomorphic to M . The gluing should take edges to edges, and faces to faces.

We obtain a tetrahedral decomposition from the polyhedral decomposition as follows. Choose a polyhedron
and an ideal vertex v and add an edge between v all other vertices on the polyhedron. Between any two edges
meeting v add an ideal triangle meeting v. Between any three triangles meeting v add an ideal tetrahedron.
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A

B

D
C E

F

Figure 5: Graph of the top polyhedron

Split off the resulting tetrahedron. This reduces the collection of polyhedra to a collection with one fewer
vertex. After repeating a finite number of times, we obtain a collection of ideal tetrahedra which glue to
give the original manifold.

In general, 3-manifolds admit ideal triangulations, a result due to the work of Moise and Bing [Bin59; Moi52].

Definition 2.8 (Cusp Triangulation). Let M have topological ideal triangulation. When we remove the
vertices, we obtain a collection of triangles lying on the boundary of M . The gluing on the faces of the
tetrahedra induces a gluing of the these triangles, called the cusp triangulation.

2.2 Hyperbolic Structures
Theorem 2.9. Let M be a manifold with boundary consisting of tori, then for any topological ideal trian-
gulation of M , the number of edges of the triangulation is the number of tetrahedra.

There a natural equivalence relation on the edges of the tetrahedra, where two edges are equivalent iff they
are identified in the gluing of the tetrahedra. Theorem 2.9 tells us that there are n equivalence classes, where
n is the number of tetrahedra in the triangulation.

Definition 2.10 (Edge Class). Let M be a triangulated 3-manifold with a triangulation into n ideal tetra-
hedra. Index the equivalence classes of edges with an integer 1 ≤ i ≤ n. The edge class of an edge E is the
index of [E].

Each edge of a tetrahedron has two ends, and each of those ends lies at a vertex of the cusp triangulation.
In this way, we have a labelling of each cusp vertex by the edge class which lies at the vertex. When an
edge has ends lying on the same cusp, which is the case for all edges in a knot complement, the edge class
appears as two distinct vertices in the cusp triangulation of the cusp. To distinguish these vertices we give
each cusp vertex an edge index.

Definition 2.11 (Edge Index). Let M be a triangulated 3-manifold. Let v be a vertex in the cusp triangula-
tion of a boundary component of M . The edge index of v is an integer, either 0 or 1, such that two distinct
cusp vertices corresponding to the same edge class have different edge indices.

2.2.1 Geometric Structures

Definition 2.12 (Hyperbolic 3-space). The upper half plane model of Hyperbolic 3-space is given by,

H
3 = {(x, y, z) ∈ R3 | z > 0}

with the metric,

7



ds2 =
dx2 + dy2 + dz2

z
.

Let M be a manifold with an ideal triangulation and a Riemannian metric g. Then M admits a hyperbolic
structure if every point of the manifold has a neighbourhood isometric to a ball in H3. We would like to
know when an ideal triangulation admits a hyperbolic structure. Suppose a 3-manifold M has an ideal
triangulation consisting on n tetrahedra. We label opposite edges of the i-th tetrahedron by ai,bi, ci. This
induces a labelling of the vertices of a cusp triangle by the label on the edge the vertex lies in.

Definition 2.13 (Combinatorial Holonomy). Let γ be a curve in a cusp triangle which meets distinct side
of the triangle. The combinatorial holonomy, h(γ) is edge label, ai,bi, ci of the cusp triangle which is cut
off by the curve. The sign of h(γ) is +1 for a curve travelling anti-clockwise and −1 for a curve travelling
clockwise.

See Figure 6 for an example. We extend this holonomy to an oriented curve on a cusp, as a formal sum of the
holonomy for each arc of the curve. Let M be a manifold with tori boundary and ideal triangulation which
admits a hyperbolic structure. Each edge of the triangulation has two ends, each of which lie in a cusp of M .
In the cusp triangulation, this edge corresponds to a vertex of a cusp triangle. The combinatorial holonomy
of a curve which encircles this vertex, gives the coefficients of the gluing equations, which we describe below.

Consider an ideal tetrahedron embedded in H3. Choose an edge e of the tetrahedron, then we can map the
vertices of e to 0 and ∞. If we send one of the remaining vertices of the tetrahedron to 1, this uniquely
determines where the final vertex lies. This final vertex lies on the boundary of H3 and not at infinity, so
we can consider it as an element of C, but we have two different points depending on which vertex we send
to 1. One of these points will have positive imaginary part, and the other negative imaginary part, so as a
convention we choose the one with positive imaginary part. This is called the edge invariant of e, denoted
z(e).

Definition 2.14 (Edge Invariant). For an ideal tetrahedron T embedded in H3 and edge e of that tetrahedron,
define the number z(e) in C to be the complex number with positive imaginary part obtained by applying the
unique isometry of H3 that takes the vertices of e to 0 and ∞, takes another vertex to 1 and takes the final
vertex of T to z(e). This is called the edge invariant.

For a hyperbolic structure, we want the tetrahedra around an edge to glue such that walking around the
edge brings us back to the same position. This is reflected in the condition, of the following theorem, that
the product of edge invariants is 1. The following theorem is due to Thurston, and a proof can be found
in [Pur20].

Theorem 2.15 (Edge Gluing Equations). Let M be a 3-manifold which admits a topological ideal trian-
gulation such that each ideal tetrahedron has a hyperbolic structure. The hyperbolic structures on the ideal
tetrahedra induce a hyperbolic structure on the gluing M iff for each edge e,∏

z(ei) = 1 and
∑

arg(z(ei)) = 2π.

2.2.2 Complete Structures

A manifold has a complete structure if it admits a complete metric. Similarly to geometric structures, we
would like to know when a triangulation admits a complete structure. Consider a tori boundary component
of a manifold M , and a basis for the fundamental group of this torus m, l. For manifolds which admit
a complete hyperbolic structure, the holonomy of these curves gives the coefficients of the completeness
equations, H(m) = 1 and H(l) = 1.

Definition 2.16. Suppose M has a topological ideal triangulation, and let T be the boundary torus of a cusp
of M . Let [α] ∈ π1(T ), so α is a loop on T in the homotopy class of [α]. We associate a complex number
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a

b

c

γ

a

b

c

γ

h(γ) = b h(γ) = −b

Figure 6: Combinatorial Holonomy [MP22].

H(α) to α as follows. The loop α can be homotoped to run through any triangle of the cusp triangulation of
T monotonically, i.e. in such a way that it cuts off a single corner of each triangle it enters. Denote the edge
invariants of the corners cut off by α with z1, . . . , zn. Further associate to each corner a value ϵi = ±1: if
the i-th corner cut off by α lies to the left of α, set ϵi = +1. If the corner lies to the right of α, set ϵi = −1.
Finally, set the value of H(α) to be

H(α) =

n∏
i=1

zϵii .

The completeness equations indicate whether a triangulation admits a hyperbolic structure. The following
proposition is due to Thurston, a proof can be found in [Pur20].

Proposition 2.17 (Completeness Equations). Let T be the torus boundary of a cusp neighborhood of M ,
where M admits a topological ideal triangulation, and the ideal tetrahedra admit hyperbolic structures that
satisfy the edge gluing equations (Theorem 2.15). Let m, l be a basis for π1(T ). If H(m) = H(l) = 1 on each
cusp of M , then the hyperbolic structure on M induced by the hyperbolic structure on the tetrahedra will be
a complete structure.

2.3 Symplectic Form
We define an abstract intersection number of two curves on a cusp triangulation which will be related to
the Neumann-Zagier symplectic form. The intersection number is defined locally on a cusp triangle and
extended linearly to the cusp triangulation.

Definition 2.18 (Local Signed Intersection Number). Let δ be a cusp triangle and γ, γ′ two curves on δ
which run between distinct sides of the cusp triangle. If γ and γ′ are oriented such that they enter δ on the
same edge, the local signed intersection number is defined as

γ · γ′ = 1, γ′ · γ = −1

with all other local intersection numbers being 0.

γ γ′

Figure 7: Two curves γ and γ′, which pick up a holonomy as they seperate.

This local intersection number is extended linearly to an abstract intersection number on the cusp. We can
also consider a curve γ on a cusp triangulation as a vector in R3n, given by h(γ). Consider the vector space V

9



generated by {ai, bi, ci | 1 ≤ i ≤ n}, consisting of formal sums with coefficients in R. Then V has dimension
3n, and is naturally identified with R3n. Neumann and Zagier imposed the relations ai + bi + ci = 0, which
gives a quotient space V/ ∼ of dimension 2n spanned by {ai− ci, bi− ci | 1 ≤ i ≤ n}. Applying the quotient
map to h(γ), we obtain an element of V/ ∼. We define the symplectic form on this quotient space.

Definition 2.19 (Symplectic Form). Let x = (x1, . . . , x2n), y = (y1, . . . , y2n) ∈ R2n, and define ω : R2n ×
R2n → R by

ω(x, y) =

∣∣∣∣x1 x2

y1 y2

∣∣∣∣+ · · ·+ ∣∣∣∣x2n−1 x2n

y2n−1 y2n

∣∣∣∣
We will see later that the intersection number of particular curves on a cusp is related to the symplectic
form applied to the holonomy of the curves.

3 Lambda Lengths
Before introducing oscillating curves on triangulated 3-manifolds, we take a brief detour to describe a related
concept known as lambda lengths. In hyperbolic 2-space, lambda lengths satisfy a so called ’Ptolemy
Equation’, and the following exposition is based on the exposition given by Penner [Pen10]. Lambda lengths
and the Ptolemy equation can be generalised to complex lambda lengths in hyperbolic 3-space which satisfy
a corresponding Ptolemy equation, for the proofs we refer to Spinors and Horospheres [Mat23].

3.1 Lambda Lengths in Hyperbolic 2-space
We begin by introducing some basic hyperbolic geometry.

Definition 3.1 (Projective Special Linear Group). The Mobius group PSL(2,R) is the group of 2×2 matrices
of determinant 1 modulo the relation which identifies I with −I.

PSL(2,R) = SL(2,R)/(I ∼ −I).

We have three different models of hyperbolic 2-space, known as the conformal disk, upper half plane and the
open positive light cone L+.

Definition 3.2 (Conformal Disk Model). The conformal disk model is a 2-dimensional hyperbolic manifold
given by,

D = {(x, y) ∈ R2 | x2 + y2 < 1}.

together with the following metric which has constant gaussian curvature of −1.

ds2 = 4
dx2 + dy2

1− ∥z∥2
.

Geodesics in the disk are precisely the curves which lie on circles which intersect the boundary of D2 orthog-
onally. We can describe these circles explicitly. Let v = v0 + iv1, w = w0 + iw1 ∈ D2. The geodesic passing
through v and w is given by x2 + y2 + ax+ by + 1 = 0 with (x, y) ∈ D2 and,

a =
v1(1 + |w|2)− w1(1 + |v|2)

v0w1 − v1w0
,

b =
w0(1 + |v|2)− v0(1 + |w|2)

v0w1 − v1w0
.

Definition 3.3 (Upper Half Plane). The Upper Half Plane is the set

U = {(x, y) ∈ R2 | y > 0},
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together with the metric,

ds2 =
dx2 + dy2

y
.

PSL(2,R) acts on U by fractional linear transformations,(
a b
c d

)
: z 7→ az + b

cz + d
.

Similarly to the Poincare disk, the geodesics in the upper half plane are precisely the curves which lie on
circles that intersect the boundary orthogonally. Since the boundary of the upper half plane consists of
the x-axis and the point at infinity, we have circles which intersect the x-axis orthogonally or vertical lines.
Let v = v0 + iv1, w = w0 + iw1 ∈ U , where v0 ̸= w0. The geodesic passing through v and w is given by
(x− a)2 + y2 = r2 with (x, y) ∈ U and,

a =
|v|2 − |w|2

2(v0 + w0)
,

r2 = (v0 − a)2 + v21 .

A horocycle in U is a Euclidean circle tangent to the real line at some point p, or a horizontal line for
a horocycle at infinity. This definition relies on the Euclidean metric, so we have an alternate invariant
definition of a horocycle.

Definition 3.4 (Horocycle). Choose a point p in the hyperbolic plane and a tangent direction v at p, and
consider a family of hyperbolic circles whose radius and center diverge in such a controlled manner as to pass
through p with tangent direction v. Such a sequence of hyperbolic circles has a well defined limit, defined to
be a horocycle.

Definition 3.5 (Minkowski 3-Space). Minkowski 3-space is R3 together with the indefinite pairing,

⟨·, ·⟩ : R3 × R3 → R, ⟨(x, y, z), (x′, y′, z′)⟩ 7→ xx′ + yy′ − zz′.

There are several characteristic subspaces of Minkowski 3-space, in particular,

H = {u = (x, y, z) ∈ R3 | ⟨u, u⟩ = −1 and z > 0},

which is the upper sheet of the hyperboloid and is also a model for hyperbolic geometry,

L+ = {u = (x, y, z) ∈ R3 | ⟨u, u⟩ = 0 and z > 0},

which is the open positive light-cone, and finally,

H = {u = (x, y, z) ∈ R3 | ⟨u, u⟩ = +1}.

which is the hyperboloid of one sheet. An isometry between H and D is given by the projection ·̄ from the
point (0, 0,−1).

·̄ : H→ D, (x, y, z) 7→ 1

1 + z
(x, y).

Lemma 3.6 (Horocycles [Pen10]). The assignment,

L+ → {horocycles in H}, u 7→ hu = {v ∈ H | ⟨u, v⟩ = 1√
2
},

establishes an isomorphism between points of L+ and the collection of all horocycles in H. Furthermore, the
center of the corresponding horocycle hu in D is ū ∈ S1

∞, and the Euclidean radius of hu in D is 1
1+z

√
2
,

where z = (x, y, z).
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Definition 3.7 (Lambda Lengths). Given a pair of horocycles h1, h2, in the Poincare Disk, with distinct
centers, consider the geodesic γ in D connecting their centers. Let δ denote the signed hyperbolic distance
between h1 ∩ γ and h2 ∩ γ, where the sign of δ is taken to be positive iff h1 and h2 are disjoint. This is the
length of the curve γ between h1 ∩ γ and h2 ∩ γ. Define the lambda length of h1, h2 to be

λ(h1, h2) =
√
eδ.

Figure 8 shows an example of two horospheres h1, h2 tangent to the boundary of D at v and w respectively,
and signed distance δ between the two horospheres.

δh1

h2v

w

Figure 8: Horospheres and Lambda Lengths in the Poincare Disk. h1 is a horosphere at v and h2 is a
horosphere at w, with δ the distance between the horospheres along the geodesic through v and w.

Theorem 3.8 (Ptolemy Equation [Pen10]). Suppose u1, u2, u3, u4 ∈ L+, where u1, u2, u3, u4 ∈ S1 are
distinct and occur in this counterclockwise cyclic order, and let λjk = λ(huj , huk

) for j, k ∈ {1, 2, 3, 4},
denote the lambda lengths. Then

λ13λ24 = λ12λ34 + λ14λ23.

This construction of lambda lengths and Ptolemy’s equation in hyperbolic 2-space generalises to complex
lambda lengths and another Ptolemy equation in hyperbolic 3-space.

3.2 Hyperbolic 3-Space Preliminaries
Before defining complex lambda lengths in hyperbolic 3-space, we begin with some preliminaries from differ-
ential geometry. The set of invertible n× n matrices over a field F is denoted GL(n, F ). We are interested
in the subgroup of matrices which preserve the orientation of space, known as special orthogonal matrices.

Definition 3.9 (Special Orthogonal Group). The special orthogonal group, denoted SO(n), of real n × n
matrices is given by,

SO(n) = {A ∈ GL(n,R) | detA = 1 and AAT = 1}.

Each matrix M ∈ SO(3) represents a transformation of R3. We can identify this transformation with an
axis, represented as a point in S2, and a rotation around this axis. Hence, each point p in the ball of radius
π in R3 defines an element of SO(3) obtained by a rotation of ∥p∥ anti-clockwise around the axis through p.
This is not a bijection since anti-podal points on the boundary of the ball define the same element of SO(3).
Identifying anti-podal points of the ball we obtain RP3 which is in bijection with the elements of SO(3). The
anti-podal map gives rise to a covering space action of Z2 on RP

3. Since S3 is simply connected, we have
π(RP3) = Z2 and S3 is the universal, double cover of RP3. The lift of SO(3) to the universal cover is called
the spin group Spin(3).

12



Definition 3.10 (Fiber Bundle). A fiber bundle is a structure (E,M, π, F ) which consists of manifolds
E,M,F , and a surjective map π : E →M such that, for any x ∈M , there exists an open neighbourhood U
and a homeomorphism φ : π−1(U)→ U × F satisfying

π−1(U) U × F

U

φ

π
π1

where π1 is the projection onto the first component.

The set π−1({x}), which is homeomorphic to F , is called the fiber over x and is denoted Ex. A fiber bundle
can be thought of as attaching this manifold F to each point x ∈M to obtain a new manifold E, and locally,
i.e. in a neighbourhood of x, this manifold looks the cartesian product of this neighbourhood of x with F .

Definition 3.11 (Topological Group). A topological group G is a topological space, which is also a group
such that the binary operation and inverse maps,

· : G×G→ G −1 : G→ G,

are continuous.

Definition 3.12 (Group Action). Let G be a group and S a set. A right action of G on S is a map
S ×G→ S such that,

a) (Identity) x · 1G = x,

b) (Compatibility) (x · g) · h = x · (gh).

Note in the compatibility condition, the left hand side consists of two operations coming from the group
action, compared to the right hand side which contains the group action and the binary operation coming
from the group G. A group action is transitive if for any x, y ∈ S, there exists g ∈ G such that xg = y. A
group action is free if g · x = x for some x ∈ S implies g = 1G.

Definition 3.13 (Principal Bundle). Let G be a topological group and M a smooth manifold. A principal
G-bundle over M is fiber bundle π : E →M together with a continuous right action E×G→ E such that G
preserves the fibers of E and acts freely and transitively on them in such a way that for each x ∈M , y ∈ Ex,
the map G→ Ex defined by g → yg is a homeomorphism.

3.3 Lambda Lengths in Hyperbolic 3-Space
Recall hyperbolic 3-space is defined as the set,

H
3 = {(x, y, z) ∈ R3 | z > 0},

together with the metric,

ds2 =
dx2 + dy2 + dz2

z
.

A horosphere in H3 is a Euclidean ball tangent at the boundary of H3. Each point in a horosphere H ⊂ H3

has two normal directions, one which points towards the center of the horoball, called the outward direction,
and the other points away from the center, called the inward direction. Thus, we have two unit normal
vector fields N in and Nout on H. A frame at a point in H3 is a right-handed orthonormal frame, namely a
triple (f1, f2, f3) such that f1×f2 = f3. We can associate each frame to a matrix M ∈ SO(3) by writing each
fi in terms of the standard basis vectors for R3. Then the collection of all frames on H3 forms a principal
SO(3)-bundle over H3 which we denote

Fr→ H
3.

13



The universal cover of SO(3) is Spin(3), so this bundle lifts to a principal Spin(3)-bundle over H3, which we
denote,

FrS → H
3.

We refer to points of FrS as spin frames.

Definition 3.14 (Decorated Horospheres). Let v be a unit parallel tangent vector field on a horosphere H.

• The inward frame field of v is the frame field on H given by F in = (N in, v,N in × v)

• The outward frame field of v is the frame field on H given by F out = (Nout, v,Nout × v)

A decorated horosphere is a pair (H,F ) where F is the pair of frames F = (F in, F out).

Definition 3.15. An outward (resp. inward) spin decoration on H is a continuous lift of an outward (resp.
inward) frame field from Fr to FrS.

Given a unit parallel tangent vector field v, at each point of a horosphere H, we can rotate the inward (resp.
outward) frame field by π or −π around v. In either case we obtain the same outward (resp. inward) frame
field. On the other hand, given an outward (resp. inward) spin decoration, we can rotate by π or −π around
v but we will obtain distinct inward (resp. outwards) spin decorations on H, related by a rotation of 2π.
We make the following convention for associating spin decorations. For an outward spin decoration W out

on H, the associated inward spin decoration is the spin decoration obtained by rotating W out by π around
v at each point of H. For an inward spin decoration W in on H, the associated outward spin decoration is
the spin decoration obtained by rotating W in by −π around v at each point of H.

Definition 3.16 (Spin Decorated Horospheres). A spin decoration on a horosphere H is a pair W =
(W in,W out) of associated inward and outward spin decorations. We denote a spin-decorated horosphere
by (H,W ), and denote the set of spin-decorated horospheres by HorS.

Definition 3.17. Let p be a point on an oriented geodesic γ in H3. A frame F = (f1, f2, f3) at p is adapted
to γ if f1 is positively tangent to γ. A spin frame F̃ at p is adapted to γ if it is the lift of a frame adapted
to γ.

Let p1, p2 be two points on an oriented geodesic, and frames Fi = (f i
1, f

i
2, f

i
3) at pi, adapted to γ. Starting at

p1, parallel transport along γ to p2 carries f1
1 to f2

1 since both frames are adapted to γ at p1 and p2. Then
we have a frame F ′ = (f ′

1, f
′
2, f

′
3) which is the frame obtain by parallel transport of F1 along γ. Since f ′

1

agrees with f2
1 , F ′ and F 2 are related by a rotation θ. For frames, θ is well defined modulo 2π and for spin

frames θ is well defined modulo 4π. We can also define a signed distance ρ, which is the distance between
p1 and p2 with the sign coming from the orientation on γ.

Definition 3.18 (Complex Distance). Let F1, F2 be frames (or spin frames) at points p1, p2, on an oriented
geodesic γ, adapted to γ. The complex distance from F1 to F2 is ρ+ iθ, where a translation along γ of signed
distance ρ, followed by a rotation about γ of angle θ, takes F1 to F2.

Let H1, H2 be two horospheres, with center z1, z2 ∈ ∂H3 respectively. Let γ be the oriented geodesic from
z1 to z2, and pi = γ ∩ Hi. Note if we have spin decoration Wi = (W in

i ,W out
i ) on Hi, then W int

1 (p1) and
W out

2 (p2) are adapted to γ.

Definition 3.19 (Complex Lambda Lengths). Let (H1, W1) and (H2, W2) be spin-decorated horospheres.
The complex lambda length from (H1, W1) to (H2, W2) is,

λ12 = exp

{
d

2

}
,

where d is the complex distance from W in
1 (p1) to W out

2 (p2). When the horospheres H1 and H2 have a common
center, then the complex lambda length between them is zero.
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Figure 9: Ideal tetrahedron in hyperbolic 3-space.

Since the imaginary part of d is well defined modulo 4π, the imaginary part of d
2 is well defined modulo 2π.

Hence, λ12 is well defined.
We can embed an ideal tetrahedron in hyperbolic 3-space with three vertices on the xy-plane, and the fourth
at the point at infinity (Figure 9). The sides of the tetrahedron are then geodesics, vertical lines from the
points on the xy-plane to the points at infinity and circles which intersect the xy-plane at 90 degrees for
points on the xy-plane. We can then place horospheres at each vertex of the tetrahedron, and we have a
complex lambda length between horospheres. Theorem 3.8 can be generalised these horospheres (Figure 10),
a proof of which can be found in Spinors and Horospheres [Mat23].

Theorem 3.20 (Ptolemy Equations of a Hyperbolic Tetrahedron [Mat23]). Let T be an ideal hyperbolic
tetrahedron with vertices numbered 1, 2, 3, 4. Let Hi, i ∈ {1, 2, 3, 4} be spin-decorated horospheres at each
vertex of T . Let λij be the complex lambda length between horospheres Hi and Hj. Then,

λ13λ24 = λ12λ34 + λ14λ23.

λ12

1

2

4

3

Figure 10: Horospheres and Lambda Lengths on an ideal tetrahedron. Each horosphere is decorated with a
frame at each point, given in red.

4 A Symplectic Basis for 3-Manifold Triangulations
Now we construct oscillating curves dual to edge curves, which extends the Neumann-Zagier matrix to
one which is symplectic (up to factors of 2). For proofs, we refer to A Symplectic Basis for 3-Manifold
Triangulations [MP22]. Firstly some naming conventions. An Edge Curve Ci is a curve on a cusp which
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encircles the edge with edge class i, in the triangulation. We prefix an element of the cusp triangulation by
”cusp”, to distinguish edges in the tetrahedron from edges in the cusp triangulation. The boundary curves
on a torus cusp refer to a choice of simple closed curves mi, li forming a basis for the fundamental group of
cusp.

4.1 Triangulation
Let M be a 3-manifold with nc ≥ 1 ends and an ideal triangulation T . A decomposition into ideal tetrahedra
and the corresponding cusp triangulation of the figure 8 knot is shown in Figure 11.
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Figure 11: The figure-8 knot complement is made of two tetrahedra, with cusp triangulation shown. A choice
of boundary curves l and m are shown, and one of the edge curves C1 [MP22].

4.2 Train Tracks
To construct an oscillating curve, we define the notion of train tracks for a triangulation. Starting with an
ideal tetrahedron, we truncate the tetrahedron further by removing a neighbourhood of each edge. The train
tracks lie on the boundary components of the tetrahedron, as indicated in red in Figure 12. More specifically
the train tracks lie in the long rectangles (the boundary of the truncated edges) and cusp triangles (which
contain short rectangles). Curves which dive through the manifold do so along long rectangles, and contribute
no combinatorial holonomy. We say a curve is carried by the train tracks if it is lying on the train track.
Curves run along short rectangles in order to dive through the manifold. We denote the train tracks on M
by τ . More details on the construction of train tracks can be found in [MP22].

4.3 End Multi Graph
Let n be the number of tetrahedra in the ideal triangulation of M , and nE the number of edges. We also
denote nc as the number of ends (boundary components). Define the following graph.

Definition 4.1 (End Multi Graph). The end (multi) graph G of T is defined as follows.

1. The vertices of G are ends or boundary components of M .

2. G has one edge for each E of T , with endpoints in G joining vertices corresponding to the same ends
meeting E.
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Figure 12: Train tracks on an ideal tetrahedron [MP22]

The end multi graph represents how the different boundary components of M are connected by edges of the
cusp triangulation. We need the following properties of the end multi graph to construct oscillating curves.

Lemma 4.2 (Mathews & Purcell). There exists a collection ε′c of nc − 1 edges of T , forming a spanning
tree for the end graph, which connects all ends of M .

Since all trees are bipartite, we can 2-color the tree.

Lemma 4.3 (Mathews & Purcell). There exists an edge E0 of τ which connects ends of the same color.

The purpose of this extra edge is as follows. Denote εc = ε′c ∪ {E0}. Then for any two ends of M , we can
form a path between them using the edges in εc which has odd length. Aside from the edges εc, there are
nE − nc edges of T , which we denote E1, . . . , EnE−nc

.

4.4 Cusp Triangulation
Lemma 4.4 (Mathews & Purcell). Let e be an ideal edge of a triangulation, and suppose a curve carried by
τ runs through a fixed long rectangle R adjacent to e, through both branches on R. The long rectangle R lies
in a tetrahedron t, and is adjacent to a unique face F of t. Then the curve must run through two triangles
of the boundary triangulation adjacent to e in t, entering the triangles along the side corresponding to the
face F, and running across this side by way of a short rectangle containing one of the branches of τ .

This lemma allows us to ′dive through the manifold′. A curve can run along a short rectangle (i.e. adjacent
to the edge of a cusp triangle). This curve then travels through the manifold along a long rectangle and exits
at the other cusp vertex. The face adjacent to the short rectangle the curve runs along to enter the manifold
is the same as the face adjacent to the short rectangle the curve exits the manifold along (see Figure 32).

4.5 Oscillating Curves
Oscillating curves which are dual to the edge curves give rise to vectors that extend the Neumann-Zagier
matrix to one which is symplectic (up to factors of 2).

Definition 4.5 (Oscillating Curve). Let γ be a curve on a boundary component of a 3-manifold M , which
may dive through the manifold as described in Lemma 4.4. If γ is oriented such that γ reverses orientation
as it passes through the manifold, γ is called an oscillating curve.

We say an oscillating curve is dual to an edge curve, if the oscillating curve intersects the edge curve once.
Since the curve reverses orientation as it passes through the manifold, the curve consists of an even number
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of components. We will use the End Multi Graph, in particular the unique path of odd length, to determine
the cusps which these components will lie in. The existence of such curves is a result of the following lemma.

Lemma 4.6 (Mathews & Purcell). There exists a collection of disjoint curves Γ1, . . . ,ΓnE−nc
, each disjoint

from all mi and li, with Γi meeting Ci exactly once, and disjoint from Cj when i ̸= j. Moreover, each such
curve runs through an even number of long rectangles along branches in that long rectangle, and runs between
distinct sides of each cusp triangle that it meets.

In the case of knot complements, each oscillating curve Γi dives through the manifold twice (once through
the edge class for the curve Ei and once through the common edge class E0). A choice of oscillating curves
is drawn in Figure 13.
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Figure 13: The arcs of the dual oscillating curve Γ for the figure-8 knot [MP22].

4.6 Neumann-Zagier Matrix
For a given triangulation, the basis ai,bi, ci are encoded as vectors:

a1 = (1, 0, 0, 0, . . . , 0) b1 = (0, 1, 0, 0, . . . , 0) c1 = (0, 0, 1, 0, . . . , 0)

and so on. We calculate the combinatorial holonomy for the curves mi, li, Ci,Γi, in terms of this basis. For
the figure 8 knot and the oscillating curves shown in Figure 13 we obtain the following incidence vectors.
The basis ai,bi, ci is illustrated in Figure 11.

m : (0, 1, 0, 1, 0, 0)

l : (0, 2, 2, 0, 2, 2)

C : (2, 0, 1, 2, 0, 1)

Γ : (1, 1, 1, 1, 1, 1)

The Neumann-Zagier matrix consists of the rows C, m and l, with the relation ai + bi + ci = 0 imposed.
So we replace the columns ai,bi, ci with ai − ci,bi − ci. The Γ row extends this matrix to one which is
symplectic (up to factors of 2) SY .

Example 4.7. Imposing the relation ai + bi + ci = 0 on the combinatorial holonomy for the curves found
above, we obtain the following matrix SY .

SY =


0 −1 1 0
2 0 −2 0
1 −1 1 −1
0 0 −2 0


We evaluate ω for pairs of curves (rows of SY ) obtained from the Figure 8 knot.
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ω(h(m), h(l)) =

∣∣∣∣0 −1
2 0

∣∣∣∣+ ∣∣∣∣ 1 0
−2 0

∣∣∣∣
= 2

ω(h(Γ), h(C)) =

∣∣∣∣0 0
1 −1

∣∣∣∣+ ∣∣∣∣−2 0
1 −1

∣∣∣∣
= 2

ω(h(m), h(Γ)) =

∣∣∣∣0 −1
0 0

∣∣∣∣+ ∣∣∣∣ 1 0
−2 0

∣∣∣∣
= 0

This leads to the main theorem [MP22], let g =
∑n

i=0 gi be the sum of genera for each boundary component
of M .

Theorem 4.8 (Mathews & Purcell). There exists a constructive algorithm to determine oscillating curves
C1, . . . CnE−nC

associated with edge gluings, and dual oscillating curves Γ1, . . .ΓnE−nC
, so that these curves

along with a standard basis for H1(M), m1, l1, . . . ,mg, lg form a symplectic basis, in the sense that

ω(h(Ci), h(Γj)) = 2Ci · Γj = 2δij

ω(h(mi), h(lj)) = 2mi · lj = 2δij

and ω, evaluated on the combinatorial holonomy of any other pair of curves, is zero.

5 Algorithm
Theorem 4.8 gives the existence of an algorithm to construct oscillating curves on triangulated 3-manifolds.
We develop an algorithm to construct oscillating curves dual to the edge curves, which is new to this paper,
and furthermore we implement the algorithm in C within the SnapPy kernel. There are 4 main steps to our
algorithm,

1. Initialise cusp triangles and cusp regions (Sections 5.1 & 5.2),

2. Construct the end multi graph (Section 5.5),

3. Construct train lines on each cusp (Section 5.6),

4. Construct oscillating curves (Section 5.7).

Finally, we calculate the combinatorial holonomy of the oscillating curves dual to the edge curves and piece
together the rows into the final matrix SY . This section describes the algorithm at a high level and the
different choices it makes to construct the oscillating curves. The details of each of the structures are
described in Section 6.

5.1 Cusp Triangles
For a manifold with an ideal triangulation, the removed vertices of an ideal tetrahedron give a collection of
triangles, called cusp triangles, which form a triangulation of each boundary component The CuspTriangle’s
are derived from the Triangulation object provided by SnapPy. Each CuspTriangle stores the information
about the triangle such as the neighbouring CuspTriangle’s and a CuspVertex at each cusp vertex. Each
edge of the cusp triangle lies in a face of a tetrahedron, and each vertex lies in an edge of a tetrahedron. So
at each cusp vertex we have an edge class, the edge class of the edge of the triangulation the vertex lies in.
Each cusp vertex also has an associated edge index. When we want to dive through the manifold along an
edge, the approach will be to find a cusp triangle which has a vertex with edge class of the target edge.
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5.2 Cusp Regions
Our general approach to constructing oscillating curves will be to construct a graph representing how we
can move around the cusp, and then using breadth first search to find a path through the cusp. If we used
the CuspTriangles to construct this graph, the curve we construct may intersect with the boundary curves
mi, li, or with previously constructed oscillating curves. One approach to tackle this problem could be to
construct a graph dual to the cusp triangles initially, and then altering the graph at each iteration to take
into account the new curves. The downside to this approach is the complexity of altering the graph from the
sheer number of configurations possible after constructing a curve. Instead, we build an intermediate object
which handles these changes locally, so the program can work out for itself how the graph has changed after
constructing a curve. This intermediate object is called a CuspRegion.

Definition 5.1 (Cusp Region). Let T be a torus with a triangulation, and γ1, . . . , γn curves which are
either simple closed curves, or begin and end at vertices of the triangulation, and which intersect edges of
the triangulation transversally. A Cusp Region is a connected component of the torus with the curves and
the edges of each triangle removed.

In other words, curves on a CuspTriangle subdivide the cusp triangle into distinct CuspRegions. An example
of two different cusp regions are shown in Figure 15. Each CuspRegion keeps track of various attributes
associated to the region, such as the cusp triangle it lies in, the cusp edges the region meets, the number of
curves on each cusp edge (used for adjacent cusp regions, Section 5.3), and the short rectangles an oscillating
curve in the cusp region can dive along. Initially, the cusps contain the curves m, l which form a basis for
the fundamental group of the cusp. The boundary curves, m, l, intersect at a point, once and on the interior
of a cusp triangle. The construction of the CuspRegions when the cusp only contains the boundary curves
is split into those on the cusp triangle with the intersection point, and those not on this cusp triangle. We
describe the initialisation of the cusp regions for these two types of cusp triangles in Section 5.2.1 and 5.2.2.
After constructing a curve on a cusp, we split cusp regions locally at each cusp triangle, which is described
later in Section 5.8.

5.2.1 Intersection Cusp Triangle

To simplify the initialisation of the CuspRegion’s coming from the curves m, l, we make use of the following
lemma.

Lemma 5.2 (Boundary Curves). Let T be a torus with a triangulation. The function peripheral_curves()
contained in the SnapPy kernel places curves m, l on T such that,

i) m, l are simple closed curves on T ,

ii) m, l generate the fundamental group of T ,

iii) The intersection point of m and l lies on the interior of a triangle,

iv) The curves enter the triangle containing the intersection point once.

SnapPy already guarantees conditions i-iii, the new property described by this lemma is part iv. Property
iv is not necessary for the construction of oscillating curves, rather it simplifies the construction of the
cusp regions when the cusp contains only the boundary curves. Moreover, the rest of the algorithm does
not depend on this assumption, so one could replace this initialisation function with a general one. We
analyse the functions pick_base_tet, set_up_perimeter and expand_perimeter, which are contained in
kernel/kernel_code/peripheral_curves.c in the SnapPy source code [Cul+23]. These are called by
peripheral_curves() to construct the boundary curves. In essence, peripheral_curves() constructs
a graph on each cusp, which forms a spanning tree of a fundamental domain. The curves are found by
traversing this tree from leaves of the tree to the root, in such a way that the result is a pair of curves which
generate the fundamental group. The root of the tree then becomes the intersection of the curves, which is
the node we are concerned with.
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Proof. We give the function pick_base_tet a triangulation of a 3-manifold and a cusp. The function looks
through the tetrahedra of the triangulation in order, and within each tetrahedron it looks through its ideal
vertices in order, until it finds an ideal vertex at the given cusp, and stores the tetrahedron and vertex in
base_tet and base_vertex.

stat ic void pick_base_tet (
Tr iangu la t i on ∗manifold ,
Cusp ∗cusp ,
Tetrahedron ∗∗base_tet ,
VertexIndex ∗base_vertex )

{
Tetrahedron ∗ t e t ;
VertexIndex v ;

for ( t e t = manifold−>tet_l i s t_beg in . next ;
t e t != &manifold−>tet_l i s t_end ;
t e t = tet−>next )

for ( v = 0 ; v < 4 ; v++)
i f ( tet−>cusp [ v ] == cusp )
{

∗base_tet = t e t ;
∗base_vertex = v ;
return ;

}

/∗
∗ I f p ick_base_tet ( ) didn ’ t f i nd any v e r t e x be l ong ing
∗ to the s p e c i f i e d cusp , we ’ re in b i g t r o u b l e .
∗/

uFata lError ( "pick_base_tet " , " per iphera l_curves " ) ;
}

The function set_up_perimeter() initialises the data structures needed for the search. We give
set_up_perimeter the previously found base_tet and base_vertex. The PerimeterPiece object is used
by SnapPy to keep track of the current search region of the cusp, and later to store the tree of cusp triangles.
Each tetrahedron is given an array of 4 extra structs, which represent the cusp triangle coming from each
vertex of the tetrahedron. The key point is the visited attribute of the starting cusp triangle, stored in the
extra->visited attribute on each tetrahedron, is set to TRUE. We will see in the next function that visited
is responsible for the control flow of the search.

stat ic void set_up_perimeter (
Tetrahedron ∗base_tet ,
VertexIndex base_vertex ,
Per imeterPiece ∗∗perimeter_anchor )

{
int i ;
Per imeterPiece ∗pp [ 3 ] ;

base_tet−>extra [ base_vertex ] . v i s i t e d = TRUE;
base_tet−>extra [ base_vertex ] . parent_tet = NULL;
base_tet−>extra [ base_vertex ] . o r i e n t a t i o n = right_handed ;

for ( i = 0 ; i < 3 ; i++)
pp [ i ] = NEW_STRUCT( Per imeterPiece ) ;

for ( i = 0 ; i < 3 ; i++)
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{
pp [ i ]−>te t = base_tet ;
pp [ i ]−>vertex = base_vertex ;
pp [ i ]−>fac e = vt_side [ base_vertex ] [ i ] ;
pp [ i ]−>or i e n t a t i o n = right_handed ;
pp [ i ]−>checked = FALSE;
pp [ i ]−>next = pp [ ( i +1)%3];
pp [ i ]−>prev = pp [ ( i +2)%3];

}

∗perimeter_anchor = pp [ 0 ] ;
}

The function expand_perimeter() expands the search of the cusp. SnapPy uses the PerimeterPiece object
to keep track of the current search area, which is stored as a tree with root at the base cusp triangle. If the
visited attribute of a cusp triangle is set to TRUE, the search continues to a different cusp triangle, ignoring
this visited one. If the visited attribute is set to FALSE, the search expands into this cusp triangle, a vertex
and edge are added to the tree. But in either case, the visited parameter is only set to TRUE, with the
search only expanding into a cusp triangle when visited == FALSE. Since we set visited to TRUE for the
base cusp triangle in set_up_perimeter, we never revisit the starting cusp triangle and therefore the only
curve sections on the intersection cusp triangle are the sections which intersect.

stat ic void expand_perimeter ( Per imeterPiece ∗perimeter_anchor ) {
int num_unchecked_pieces ;
Per imeterPiece ∗pp ,

∗new_piece ;
Permutation g lu ing ;
Tetrahedron ∗nbr_tet ;
VertexIndex nbr_vertex ;
FaceIndex nbr_back_face ,

nbr_left_face ,
nbr_right_face ;

Or i entat i on nbr_or ientat ion ;

for ( num_unchecked_pieces = 3 , pp = perimeter_anchor ;
num_unchecked_pieces ;
pp = pp−>next )

i f (pp−>checked == FALSE)
{

g lu ing = pp−>tet−>glu ing [ pp−>fac e ] ;
nbr_tet = pp−>tet−>neighbor [ pp−>fac e ] ;
nbr_vertex = EVALUATE( glu ing , pp−>vertex ) ;
i f ( nbr_tet−>extra [ nbr_vertex ] . v i s i t e d )
{

pp−>checked = TRUE;
num_unchecked_pieces−−;

}
else
{

/∗
∗ Extend the t r e e to the ne i ghbor ing v e r t e x .
∗/

. . .
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nbr_tet−>extra [ nbr_vertex ] . v i s i t e d = TRUE;
nbr_tet−>extra [ nbr_vertex ] . parent_tet = pp−>te t ;
. . .

}
}

}

In the case of tori boundary components, we have two different ways the boundary curves can intersect,
shown in Figure 14. While we could hard code the cusp region attributes for these two cases, rather we have
implemented a general function which finds the cusp regions on a triangle containing an arbitrary number
of intersecting curves.

We have two distinct types of cusp regions on the intersection cusp triangle. The regions which are incident
to a cusp vertex and those which are not. An example of these regions is shown in Figure 14, with a region
that meets a cusp vertex shown on the left, and one which meets one cusp edge shown on the right. We use
the number of curves which pass around each vertex to enumerate the cusp regions which meet one cusp
edge. For a cusp triangle at vertex v of a tetrahedron, we find the number of cusp regions at cusp edge e.
The cusp triangle contains two other edges, e1, e2. Then Flow(e, e1) + Flow(e, e2) + 1 is the number of cusp
regions which meet cusp edge e, where Flow(e1, e2) is the number of curves passing between edge e1 and
edge e2.

Figure 14: Two types of intersection cusp triangles.

5.2.2 Remaining Cusp Triangles

The remaining cusp regions contain arcs of boundary curves, each of which are disjoint, for which we do not
make any assumption about the number of curves on each cusp triangle. Similarly to the intersection cusp
triangle, we have two distinct types of regions on the remaining cusp triangles. Each arc of a curve on the
cusp runs between distinct sides of the cusp triangle, so we have two distinct types of cusp regions. One type
of region lies "within" the arcs on a cusp triangle. These regions meet two cusp edges, and we enumerate
them using the number of arcs which pass around the vertex. The other region is the "center" cusp region
which meets all three cusp edges of the cusp triangle. An example of these two regions is show in Figure 15.

5.3 Adjacent Cusp Regions
We define the notion of adjacent cusp regions, which will be used to construct the cusp region graph in
Section 5.4.

Definition 5.3 (Adjacent Cusp Region). Let T be a torus with a triangulation, and γ1, . . . , γi curves which
are either simple closed curves, or begin and end at vertices of the triangulation. Two cusp regions r, r′ are
adjacent if there exists a curve γ on T such that,
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Center Cusp Region
Cusp Region

Figure 15: Cusp regions of cusp triangle without intersecting curves.

i) γ meets exactly two cusp regions, r and r′,

ii) γ is disjoint from γ1, . . . , γi, and the vertices of the triangulation.

Two cusp regions r, r′ are adjacent across an edge e of the triangulation if there exists a curve γ satisfying
the above properties and γ intersects the edge e transversally.

An example of adjacent cusp regions is shown in Figure 16. This definition differs slightly from natural
notion of adjacency, which would consider r3 and r5 in Figure 16 adjacent.

r5

r6r3

r4
r1

r2

r7
r8

Figure 16: Adjacent cusp regions are indicated by red arrows.

For a given cusp triangle, we can determine which cusp triangles are adjacent across cusp edges. This is
derived from the gluing of the tetrahedra, but this is not enough to know which cusp regions are adjacent,
as there may be multiple cusp regions which meet the edge of the cusp triangle. Given two adjacent cusp
triangles, t1 and t2, let e be an edge of t1 which is adjacent to t2. The edge e has two cusp vertices, one at
either end, which we label x, y. The following proposition gives a combinatorial method for determining if
two cusp regions are adjacent.

Proposition 5.4. Suppose r1, r2 are two cusp regions, lying on cusp triangles t1, t2 respectively. r1 is
adjacent to r2 across the edge e iff all the following conditions are satisfied,

i) t1 is adjacent to t2 across edge e,

ii) r1 and r2 meet the edge e,

iii) the number of curves which cross e between x and r1 equals the number of curves which cross e between
x and r2,

iv) the number of curves which cross e between y and r1 equals the number of curves which cross e between
y and r2.
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Proof. Clearly these conditions are necessary for two cusp regions to be adjacent. Suppose r1, r2 satisfy
condition (i) − (iv). Conditions (i), (ii) give the cusp regions meet a common edge of cusp triangulation.
Consider this edge as an interval (0, 1). Let n be the curves which cross e between x and r1, and n′ curves
which cross e between y and r1. Hence, there are a total n+ n′ curves which cross e, so we subdivide (0, 1)
into n+ n′ + 1 sub-intervals, (

0,
1

n+ n′

)
, . . . ,

(
n+ n′ − 1

n+ n′ , 1

)
Since curves run between distinct sides of a cusp triangle, r1 meets e on exactly one sub-interval ( j

n+n′ ,
j+1
n+n′ ).

Condition (iii) implies j = n. The cusp region r2 is meets e in the same partition, and hence the cusp regions
are adjacent across the edge e of cusp triangle t1.

We only use condition (iv) to determine the total number of curves which cross the edge of the cusp triangle.
Instead of storing the number of curves towards each vertex along the cusp edge, we could store the number
of curves towards one vertex along the cusp edge and the total number of curves which cross each edge. In
practice, the former is simpler when working with the curves, both for finding adjacent regions and splitting
the cusp regions (Section 5.8).

5.4 Cusp Region Graph
We define the cusp region graph, which we use to construct curves on a cusp which are disjoint from other
curves on the cusp.

Definition 5.5 (Cusp Region Graph). The Cusp Region graph Gr, of a cusp C with a collection of curves
γ1, . . . , γi with are either simple closed curves or begin and end at vertices of a cusp triangle, is defined as
follows.

a) The vertices of Gr are the cusp regions of C.

b) Gr has an edge between two regions r0, r1 if they are adjacent cusp regions.

The Cusp Region graph is a subgraph of the graph dual to the cusp regions. The Cusp Region graph
simplifies the task of constructing a curve on a cusp which is disjoint from other curves on the cusp, to the
problem of graph pathfinding. An example of the Cusp Region graph is shown in Figure 17.

r5

r6r3

r4
r1

r2

r7
r8

Figure 17: The blue graph is dual to the cusp regions, the green graph is the cusp region graph for the curves
shown.

In order to construct various curves on the cusp, we build up a curve from a path through the cusp region
graph as follows. Consider a path through the cusp region graph r1, . . . , rn. Each ri represents a cusp region,
so we identify ri with an arbitrary point in this cusp region. Since we have an edge ri → ri+1, these cusp
regions are adjacent. Hence, there exists a curve βi from ri to ri+1. Piecing together each of these βi’s, we
obtain a curve on the cusp which is disjoint from other curves on the cusp. The algorithm for constructing
the Cusp Region graph is fairly straightforward, stated in Algorithm 1.
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Algorithm 1: Cusp Region graph
input : Cusp Regions
output: Cusp Region graph

1 g ← Graph(num_vertices = cusp.num_cusp_regions);
2 for each cusp region r do
3 for each edge e of the cusp triangle r is contained in do
4 if r does not meet e then
5 continue
6 end
7 r′ ← cusp region adjacent to r across edge e;
8 if g does not contain the edge (r, r′) then
9 g.insert_edge(r, r’);

10 end
11 end
12 end
13 return g;

5.5 End Multi Graph
The end multi graph describes how the cusps of M connect via edges in the triangulation. We have three
computations to perform

i) Construct the end multi graph, as defined in Definition 4.1.

ii) Find a spanning tree for this graph,

iii) Find an edge in the end multi graph such that when added to the spanning tree, forms a cycle of odd
length.

To find a spanning tree, we use breadth first search, since we have an unweighted graph. To find the edge
which forms a cycle of odd length, we 2-color the spanning tree. Then we find an edge of the end multi
graph which connects vertices of the same color. Figure 18 shows an example of the cusps for a manifold,
and the end multi graph.

Cusp 0

Cusp 1

Cusp 2 Cusp 3

Figure 18: Example end multi graph of a manifold with 4 cusps and 6 edge classes. A spanning tree for the
end multi graph is indicated in red and a choice of E0 is shown in green.

Algorithm 2 describes the construction of the end multi graph, and Algorithm 3 finds the edge E0.

5.6 Train Lines
We motivate train lines with the following example.

Example 5.6. Consider the link L11a467, show in Figure 19. This link has 3 components, so the link
complement in S3 has 3 tori boundary components, and SnapPy gives the link a triangulation consisting of
17 tetrahedra.
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Algorithm 2: End Multi Graph
input : Triangulation
output: End Multi Graph

1 g ← Graph(num_vertices = manifold.num_cusps);
2 for each tet in manifold.tet_list do
3 for each pair of vertices v1, v2 of tet, v1 ̸= v2 do

/* tet.cusp[v] is the cusp at vertex v of tet. */
4 g.insert_edge(tet.cusp[v1] , tet.cusp[v2]);
5 end
6 end
7 return spanning_tree(g);

Algorithm 3: Find edge E0

input : Graph and a spanning tree of the graph
output: An edge of the graph which forms an odd length cycle in the tree

1 q ← Queue();
2 q.enqueue(0);
3 while !q.is_empty() do
4 v1← q.dequeue();
5 for v2 adjacent to v1 in the spanning tree do
6 if v2 is not colored then
7 v2.color ← reverse(v1.color);
8 q.enqueue(v2);
9 end

10 end
11 end
12 for v1 in the end multi graph do
13 for v2 adjacent to v1 do
14 if v1.color == v2.color then
15 return edge_class(v1, v2);
16 end
17 end
18 end

The triangulation includes an edge from cusp 0 to cusp 0, which we choose to be E0, an edge from cusp 0
to cusp 1 and cusp 0 to cusp 2 which we label E and E′ respectively. There are also edges E1 from cusp 1
to cusp 1 and E2 from cusp 2 to cusp 2. We take {E,E′} to form a spanning tree for the end multi graph.
Suppose we are constructing oscillating curves on this link. We naively find oscillating curves which intersect
the curves C1 and C2 which run around the E1 and E2 respectively, shown in Figure 20.
Notice on cusp 0, we have a region colored in blue which has become disconnected from the rest of the cusp.
In order to construct oscillating curves, we require a path connected cusp.

We may still be able to construct the remaining oscillating curves through careful consideration of each cusp,
but it suggests the more pathological example.

Example 5.7. Consider a hypothetical link complement with a cusp in the end multi graph of degree 6,
shown on the left of Figure 21. Suppose we have 9 oscillating curves to construct which pass through this
cusp indicated by the red, green and blue lines on the left of Figure 21. Cusp 0, drawn on the right of
Figure 21, then contains 6 vertices, one for each edge class, and we are trying to find 9 curves between these
vertices. This is not possible as the complete, bipartite graph K3,3 is not a planar graph, a result also known
as the three-utilities problem.
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Figure 19: Link L11a467.

E2

C2

E1
C1

E0

E’

E

Cusp 0 Cusp 1

Cusp 2

Figure 20: Two oscillating curves on L11a467, one in red and the other in yellow.

Our solution to this problem involves constructing a single ’template’ curve, called a train line, which we
place the oscillating curves on. The curve will be constructed in a way such that we can dive into the
manifold along any edge class in the end multi graph, without picking up holonomy for any pair of curves
on the train line.

Definition 5.8 (Train Line). A train line on a cusp C with a triangulation, for a collection of edge classes
i1, . . . , ik is a curve γ on the cusp C, with boundary curves mi, li, such that

i) γ is disjoint from the boundary curves,

ii) γ runs between distinct sides of each cusp triangle it enters,

iii) γ intersects cusp edges transversally,

iv) For 1 ≤ j ≤ k, the curve γ meets a cusp edge incident to a cusp vertex corresponding to ij, with no
other curves between the intersection point and the cusp vertex.

Definition 5.9 (Train Line Siding). Let C be a cusp with a triangulation, for a collection of edge class
i1, . . . , ik, and γ a train line for this collection. A train line siding for an edge class ij is a curve β : [0, 1]→ C,
such that

i) β(0) is a cusp vertex corresponding to edge class ij,
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End Multi Graph

E1

E2

E3

E4
E1

E5

E6

E2 E3

E4 E5 E6

?

Cusp 0

Cusp 0

Figure 21: Part of a hypothetical link complement.

ii) β is tangent to a cusp edge e at t = 0,

iii) β(1) lies on the curve γ, and this arc of γ intersects the cusp edge e,

iv) β is disjoint from all curves except at β(1),

v) β meets exactly one cusp region r,

A train line with sidings for each edge class in the collection is called a train line with sidings. In order to
construct cups regions on a cusp we require curves which start and end at cusp vertices. For a train line
with sidings, as currently defined the ends of the train line curve, γ, does not start and end at cusp vertices.
So we shrink the curve γ, so it begins at the end of the first siding, and ends at the end of the last siding.
Then to construct the cusp regions, we consider the curve γ, combined with the train line sidings β1, . . . , βk

as one curve. An example of a train line with sidings is shown in Figure 22. We will construct a train line
on each cusp of a triangulated 3-manifold, with compatible sidings (such that the curves forming the sidings
satisfy Lemma 4.4), using the following steps.

i) Find the collection of edge classes for the train lines (Section 5.6.1),

ii) Choose a siding for each edge class (Section 5.6.2),

iii) On each cusp, find curves between the sidings to form the train line (Section 5.6.3).

Figure 22: Example of a train line with sidings, the train line is the red curve, with sidings in orange.

5.6.1 Edge Classes

Firstly we build a collection of edge classes which the train lines will use. We have a collection of edges
which make up the spanning tree for the end multi graph ε′c, and εc = ε′c ∪ {E0}. For each cusp Ci, we have
a collection of edges
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H(Ci) = {j ∈ {1, . . . , n} | the edge with edge class j has an end which lies in Ci}.

Then we define the collection

K(Ci) = H(Ci) ∩ εc.

Consider an edge class i /∈ εc. The edge with edge class i has two ends, each of which lie in a cusp of the
end multi graph, Cj , Ck. The graph consisting of edges from εc contains a unique path of odd length between
any two vertices. Let l(i) be the length of the unique path of odd length from Cj to Ck. Then we define a
new collection,

L(Ci) = K(Ci) ∪ {j ∈ H(Ci)− εc | l(j) > 2}.

This final collection gives, on each cusp, the edge classes in the spanning tree for the end multi graph, E0

and the edge class associated to an oscillating curve with more than 2 curve components.

5.6.2 Train Line Sidings

The sidings will be used by oscillating curves to dive into the manifold (Lemma 4.4). We find the sidings
before the train lines, so we have two choices to make.

i) Which cusp region does β enter?

ii) Which cusp edge is β(0) tangent to?

We use the following conjecture to place sidings on distinct cusp triangles.

Conjecture 5.10. Let M be a triangulated 3-manifold consisting of n tetrahedra. Let G be a graph defined
as follows,

i) G contains a vertex for each tetrahedron and each edge class of M .

ii) G contains an edge (t, i) if an edge of tetrahedron t has edge class i.

Then G has a bipartite matching

This is plausible since we have n tetrahedra and n edge classes, with each edge class coming from an edge
which lies in a number of tetrahedra. In practice this conjecture seems to hold, and we only require the result
for a subset of edge classes. A similar result holds for knots, consider a knot as a 4-valent graph in the plane.
Kauffman showed there exists a pairing between crossings of the knot and regions bound by knot which are
incident with the crossing, with no two crossings assigned to the same region [Kau83]. Rather, we would like
a pairing between vertices in a cusp triangulation and the incident cusp triangles. This conjecture assigns
edge classes in M to tetrahedra in the triangulation. Each train line sidings is associated to an edge class, and
a cusp region. This cusp region is contained in a cusp triangle, which in turn is contained in a tetrahedron.
This assignment sets the tetrahedron we use for the siding. Since we have a bipartite matching, the cusp
regions for each train line siding are contained in cusp triangles from different tetrahedra, and hence distinct.

When we choose a train line siding on one cusp, this induces a train line siding on another cusp. This
induced siding is given by Lemma 4.4, and an example of which is shown in Figure 32. The approach we
take to consistently choosing the train line sidings is as follows, also described in Algorithm 4. For each cusp
create a list of the edge classes in L(Ci). Then for each cusp, find train line sidings for all edge classes in
the list on this cusp. Ensure each of the train line sidings lies in a cusp region which matches the bipartite
matching. For each edge class we found a train line siding for, this edge class is associated to an edge of the
triangulation, and there is a cusp at the other end of the edge. Find the induced train line siding on the
other cusp and remove the edge class from the list of edge classes on the current cusp and the other cusp.
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Algorithm 4: Train Lines
1 Triangulated 3-manifold manifold output: Train Line Sidings
2 M ←Matrix(num_rows = manifold.num_cusps, num_cols = num_edge_classes);
3 for each cusp Ci in the manifold do
4 for j ∈ {1, . . . , num_edge_classes} do
5 if j ∈ L(Ci) then
6 M [i][j]← True
7 else
8 M [i][j]← False
9 end

10 end
11 end
12 for each cusp Ci in the manifold do
13 for edge_class ∈ {1, . . . , num_edge_classes} do
14 if M [i][edge_class] is False then
15 continue;
16 end
17 Find a train line siding for edge_class on Ci;
18 Cj ← index of the other cusp edge_class lies in;
19 Find a train line siding for edge_class on Cj compatible with the previous train line siding;
20 M [i][edge_class]← False;
21 M [j][edge_class]← False;
22 end
23 end

5.6.3 Curve Components

We build the train line γ incrementally, as a collection curves γ1, . . . , γi such that γj connects βj(1) and
βj+1(1). The train line is the curves γi joined together, with sidings βi. Firstly order the edge classes in
L(Ci), (α1, . . . , α|L(Ci)|). Each edge class αj has an associated siding, constructed previously, which defines
the CuspRegion, R(αj), where the curves will terminate. We find curves between the first and second edge
class, then second and third and so on.

Proposition 5.11 (Train Line Curve Components). Let C be a cusp of a 3-manifold triangulation with
boundary curves mk, lk. Let m = |L(C)| and β1, . . . , βm the collection of sidings on the cusp C found previ-
ously. There exists a collection of curves γ1, . . . , γm−1 : [0, 1]→ C such that,

i) Each γi is disjoint from mk and lk, and disjoint from γj((0, 1)) for j ̸= i,

ii) For 1 ≤ i ≤ m− 1, γi is a curve running between distinct sides of each triangle it enters,

iii) For 1 ≤ i ≤ m− 1, γi(0) = βi(1) and γi(1) = βi+1(1).

iv) For 1 ≤ i ≤ m− 2, the final arc of γi and the first arc of γi+1 lie on the same cusp triangle, and they
enter this cusp triangle from distinct sides, with one of these sides the edge which βi+1(0) is tangent
to.

Proof. We begin with γ1. Construct the cusp region graph on the cusp C for the curves mk and lk. Let R(αj)
be the cusp region βj is contained in. Let α be an edge class, with α ̸= 1, 2. α is not one of the edge classes
we are finding a curve γ1 between, rather it is used to give the curve γ1 a certain property. In the Cusp
Region graph, the cusp vertex corresponding to α will induce a cycle consisting of the cusp regions around
the cusp vertex. Let [r1, . . . , ra] be this cycle of cusp regions. Find a path γ through the Cusp Region graph
from R(α1) to a region in {r1, . . . , ra}, and a path γ′ from R(α2) to a region in {r1, . . . , ra}. The siding β2

runs tangent to an edge e at t = 0.
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If γ′ leaves R(α2) in the first step across edge e, set v1 to be the region adjacent across this edge and s1 to
be the region R(α2). Otherwise, set v1 to the region R(α2) and s1 to be the region adjacent to R(α2) across
e. This edge (s1, v1) in the cusp region graph cannot be used in the next step of curve finding. There are
two different paths σ1, σ2 around the cycle [r1, . . . , ra] to join γ to γ′. Compute the cusp region graph with
the curve γ+σ1+γ′ and γ+σ2+γ′. Since the cusp region graph is path connected, after removing the edge
(s1, v1) from each graph, we have at most 2 path connected components on each graph. One of the graphs
has a connected component which contains both the cycle [r1, . . . , rm] and the cusp region s1. Let γ1 be the
curve γ + σj + γ′ which induced this cusp region graph.

Now we proceed inductively on j < m−1. Construct the cusp region graph on Ci for the curves mi, li, β1+γ1+
· · ·+βj−1+γj−1+βj . We have an edge (sj−1, vj−1) which we find while constructing γj−1, which is defined
in the same way as (s1, v1). Assume by induction, after removing (sj−1, vj−1), we have a connected subgraph
containing sj−1 and a cycle [t1, . . . , tb]. Let α′ be an edge class on the cusp C, with α′ ̸= α1, . . . , αj+1. Then
α′ does not have a curve which dives into the cusp vertex corresponding to this edge class, and hence we
have a cycle [u1, . . . , uc] in the cusp region graph around this cusp vertex. In the same manner as γ1, find a
path γj through the cusp region graph, which goes around the cycle [u1, . . . , uc] in the direction which leaves
a cycle in the subgraph of the cusp region graph containing sj after removing (sj , vj), from sj−1 to Rj+1.
It could be the case that after removing the edge (sj−1, vj−1), we can’t find a path from sj−1 to the target
points. In this case, find a path from sj−1 to a point in the cycle from the previous iteration, pass around
the cycle [t1, . . . , tm] and then back along the path to sj−1. Then we can use the edge (sj−1, vj−1) to cross
to the other connected component of the cusp region graph.

The final curve γm−1 can be found in the same manner as the inductive case, with the exception that we
don’t need to preserve a cycle in the subgraph contain sm−1 after removing the edge (sm−1, vm−1) from the
cusp region graph.

Figure 23 shows how we incrementally construct the curve components. We start with the two sidings β1

and β2, and we find a cycle consisting of [r1, r2, . . . , r6]. The first curve component γ1 connects β1 to β2, and
passes the correct way around the cycle. Then we find a path from β2 to β3, which is the curve γ2, utilising
this cycle to pass back along through the regions (v1, s1). Without the cycle coming from [r1, r2, . . . , r6] in
the subgraph containing s1, we would be stuck in the region enclosed by γ1 due to the condition that the
curve must run between distinct sides of each cusp triangle it enters.

r1

r2 r6

r5r3
r4

β1

β2

β3

γ1

γ2

s1

s2

v2

v1

m
m

l

l

Figure 23: Two train line curve components γ1, γ2 for the train line sidings β1, β2 and β3.

In each iteration we find two cusp regions sj and vj . The cusp region sj is the start region, the next curve
starts here and can go to any adjacent cusp region except vj . The cusp region vj is the visited region, in
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order to preserve the condition that the final curve runs between distinct sides of each cusp triangle it enters,
we cannot visit this cusp region in the first step. The choice of s and v also ensures condition iv holds.
Each curve γi is disjoint from the other curves γj and the boundary curves by construction, since they are
composed of paths in the cusp region graph. An example of how the curves γi, γi+1, βi+1 meet is shown in
Section 5.8.3.

Conjecture 5.12. Let C be a cusp of a triangulated 3-manifold, which contains a train with sidings for a
collection of edge class {i1, . . . , ik}. If γ, γ′ are oriented curves on C which start and end at cusp vertices
corresponding to edge classes in {i1, . . . , ik} and lie on the train line, then

ω(h(γ), h(γ′)) = 0

This conjecture is the key point to the train line. The cusp is initially path connected, so we can find the
train line. Then oscillating curves which may disconnect the cusp can instead be made to run along the
train line, and leave the cusp path connected. A proof of this conjecture is beyond the scope of this thesis.
Instead, we justify the conjecture using the notion of an abstract oscillating curve, as defined in [MP22]. We
call the vertex of the train track which lies on a long rectangle a station.

Definition 5.13 (Abstract Oscillating Curve). An abstract oscillating curve on an oriented enhanced train
track τ is a labeling of each edge γ of τ by an integer nγ , such that the following compatibility conditions are
satisfied at each vertex v.

i) If v has degree k + 1, i.e. k + 1 incident edges γ0, . . . , γk, then

ϵγ0nγ0 + · · ·+ ϵγk
nγk

= 0

ii) If v is a station with incident edges γ, γ̂ at one end and δ = γ̄, δ̂ at the other end, then

ϵγnγ + ϵγ̂nγ̂ = ϵδnδ + ϵδ̂nδ̂

Abstract oscillating curves have the property that they only pick up combinatorial holonomy where they meet
or diverge on the interior of cusp triangles. By considering the curves on a train line as an abstract oscillating
curve, their intersection numbers will be 0, since when they diverge they dive along a short rectangle into
the manifold, which does not pick up combinatorial holonomy. This also gives the reason for the additional
edges to the sets K(Ci), since when we place the ’interior’ components of an oscillating curves, we need to
place the first and last components on the train line also. Section 7.2 illustrates the use of train lines with
sidings, and the potential issues with them.

5.7 Oscillating Curves
We want to construct oscillating curves dual to the curve Ci, which corresponds to an edge E with
edge_class i which the curve Ci circles. We construct an oscillating curve as a collection of curves which
lie on cusps, called curve components. Each curve component start and end at cusp vertices. In order to
orient the curve to be oscillating, we require the number of these components to be even. We look for a path
of odd length, consisting of edges in εc, from the cusp containing one end of E to the cusp containing the
other end of E. This gives a cycle of even length when we add the edge E to form a cycle. This path is
found using Algorithm 5 as illustrated below.
While the algorithm finds the path through the end multi graph, it keeps track of the edge class of each edge
it visits. To construct each oscillating curve, we need to extract the information about each curve component
from this path, which we make explicit in the following example.

Example 5.14. Suppose we are constructing an oscillating curve Γ which is dual to edge class 1. The edge
of the triangulation corresponding to edge class 1 lies in two cusps, say cusp 0 and cusp 3. We give this edge
class, along with end multi graph and the collection of edges εc to Algorithm 5, and suppose it returns the
path
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Algorithm 5: End Multi Graph Path
input : An edge E with edge class i, E0 the extra edge added to the spanning tree for the end

multi graph.
output: A path through the end multi graph of odd length

1 The ends of E lie at two cusps, m,n;
2 Find a path through the spanning tree we picked for the end multi graph from m to n;
3 if path length is odd then
4 return path;
5 else
6 cusp0 ← cusp index of one end of E0;
7 cusp1 ← cusp index of the other end of E0;
8 γ0 ← path from m to cusp0;
9 γ1 ← path consisting of a single edge from cusp0 to cusp1;

10 γ2 ← path from cusp1 to n;
11 return γ0 + γ1 + γ2;
12 end

Cusp 0 E2−−→ Cusp 2 E0−−→ Cusp 2 E4−−→ Cusp 3

So we have 4 components to this oscillating curve, oriented such that the curves reverse orientation after
diving through the manifold.

i) Curve 1: Lies on Cusp 0, starts at edge class 1 and ends at edge class 2.

ii) Curve 2: Lies on Cusp 2, starts at edge class 0 and ends at edge class 2.

iii) Curve 3: Lies on Cusp 2, starts at edge class 0 and ends at edge class 4.

iv) Curve 4: Lies on Cusp 3, starts at edge class 1 and ends at edge class 4.

We proceed with the general construction of components of oscillating curves. If the curve component starts
and ends at edge class in the train line with sidings on the cusp, found previously, the curve lies completely
on the train line. To find the other curve components, we start by deciding how the curve will dive into the
manifold at either end. We look for a cusp region which allows us to dive along a cusp edge into the cusp
vertex corresponding to the target edge class. The subtle detail is we need to dive in the way described in
Lemma 4.4 at either end of the edge of the triangulation corresponding to the edge class. So the first curve
component of the current curve we are constructing to use the edge picks the first cusp region which allows
us to dive along a cusp edge into a cusp vertex corresponding to the target edge class. For the next curve
component to use the edge, we pick the cusp region which matches the curve chosen previously for this edge
class. For each curve component, we use breadth first search on the cusp region graph to find a path between
the cusp regions at the start and end of the curve component.

5.8 Cusp Region Splitting
At any point in the algorithm, on a cusp of the manifold, we will have a number of cusp regions coming
from the curves γ1, . . . , γi currently lying on the cusp. Suppose we find a new curve γi+1 on the cusp, to
reconstruct the cusp region graph we need to find the cusp regions on the cusp for curves γ1, . . . , γi+1. Most
of the cusp regions information is still useful, so we don’t throw away the previously computed cusp regions.
Instead, we ’split’ each cusp region the curve passes through into two cusp regions, and then update the
other cusp regions on the relevant cusp triangles to account for this new curve. This gives a number of cases
to consider.
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5.8.1 Interior Arcs

The simplest case is an arc of a curve which meets distinct sides of the cusp triangle. For oscillating curves,
these are the arcs of the curve on the cusp except the first and last one which dive into the manifold.
Figure 24 shows an example which contains two arcs on the left. Then we add an arc on cusp region r0
which splits this region into two new regions r3 and r4. In Section 6, we will describe explicitly how we
represent cusp regions as objects in C, and compute an example of region splitting for an arc which meets
distinct sides of the cusp triangle in Example 6.2.

v3

v2 v1

r1 r2

r0

v3

v2 v1

r1 r2

r3

r4

Figure 24: Adding an arc on cusp region r0 which splits it into r3 and r4.

5.8.2 Cusp Vertex Arcs

Arcs of an oscillating curve which meet cusp vertices need to be handled differently to arcs which run between
distinct sides of the cusp triangle. After crossing an edge of a cusp triangle, there are essentially 3 different
ways the triangle can dive into a vertex of the cusp triangle. Either by ’passing around a vertex’ and along
a face opposite to the one crossed (left of Figure 25), by diving into the vertex opposite the edge which the
curve crossed (middle of Figure 25), or finally by diving along the edge the curve crossed (right of Figure 25).
For each of these cases we have different cusp regions obtained after splitting along the arc.
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Figure 25: Splitting of an endpoint cusp region.

5.8.3 Train Line Arcs

The final type of splitting occurs while constructing the train line with sidings. In Section 5.6, we described
the construction of the train lines with sidings by first choosing a set of sidings β1, . . . , βi+1, and then
incrementally finding curves γ1, . . . , γi which make up the train line. When we construct the train line, in
each iteration we need to reconstruct the cusp region graph, so we split along the train line as follows.

• In the first iteration we only have the curves m, l, so we construct the cusp region as described in
Section 5.2.

• After finding the curve γ1, we can split along the curve β1 + γ1 + β2 using the process described above
(Section 5.8.1 and 5.8.2).
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• For the remaining γi, we split along the curve γi + βi+1 using the process described above, except for
the first arc of the curve. In this case we have 3 curves meeting at a point, so we need a separate
process which we describe below.

There are 4 different ways the train lines can meet at β(1). Figure 26 shows the two cases for joining to a
train line where the previous segment dived through the manifold along the last edge it crossed. Figure 27
shows the remaining two cases, where the previous segment has dived through the manifold by either ’passing
around the vertex’ or crossed the face opposite the vertex it dives through.
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v3
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γi

r2

r3

r4

Figure 26: Join of two train line segments. Previous curve γi + βi+1 shown in green, next curve γi+1 shown
in red.
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Figure 27: Join of two train line segments. Previous curve γi + βi+1 shown in green, next curve γi+1 shown
in red.

5.9 Neumann-Zagier Matrix
All the work done previously makes calculating the Neumann-Zagier matrix relatively straightforward.
SnapPy currently contains functions to combinatorial holonomy of the curves Ci, mj and lj . We store
the intersection numbers of the oscillating curves with each cusp edge, this is identical to how SnapPy stores
the curves mj and lj . So to find the holonomy of the oscillating curves, we simply use the same algorithm as
SnapPy, with a change of arrays to the ones containing the oscillating curves. To find the holonomy corre-
sponding to the curves Ci, SnapPy walks around the edge class corresponding to Ci and adds up the basis vec-
tors ai,bi or ci on the inside cusp vertex. This function is contained in kernel/addl_code/get_gluing_equations.c
in the function get_gluing_equations(). To find the vectors corresponding to the other curves, SnapPy
looks at every cusp triangle, adding up the contribution from the arcs of the curve lying on the cusp triangle.
The function to do this for m and l is contained in kernel/addl_code/get_gluing_equations.c in the
function get_cusp_equation().

We have implemented the algorithm described above in C, within the SnapPy kernel. The algorithm has
been tested on the knots in the SnapPy HTLinkExteriors database, which contains 313,230 knots, with all
manifolds giving matrices which are symplectic (up to factors of 2). The algorithm has been merged into
the SnapPy source code [Cul+23], with the main algorithm contained in
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kernel/kernel_code/symplectic_basis.c. We add the method symplectic_basis() for Manifolds and
Triangulations, which will be available within SnapPy package after the next release. Figure 28 gives an
example of how to use the function, with the output of the form[

h(m1), h(l1), . . . , h(mg), h(mg), h(C1), h(Γ1), . . . , h(Cn−nc
), h(Γn−nc

)
]

Figure 28: Symplectic Basis for the Figure-8 knot using SnapPy.

For link complements, we have a partial implementation, which is missing the full train line functionality.
Although the current implementation can find train lines on most link complements, on some it finds matrices
which are not symplectic (up to factors of 2). An example of this is described in Section 7.2.

6 Implementation Details
In the previous section we outlined an algorithm for constructing oscillating curves dual to edge curves on
a triangulated 3-manifold. For clarity, numerous details about the structures used were omitted, which
we detail here. SnapPy constructs the Triangulation, Tetrahedron, EdgeClass, and Cusp objects as it
triangulates a 3-manifold. The structs

- CuspTriangle and CuspVertex (Section 6.1),

- CuspRegion (Section 6.2),

- EndMultiGraph and CuspNode (Section 6.4),

- PathNode and PathEndPoint (Section 6.5),

- CuspStructure (Section 6.6),

- CurveComponent and OscillatingCurve (Section 6.8)

we construct as part of the algorithm, and are new to this paper. We also use EdgeNode and Graph structs
(Section 6.3) for various different graphs, which is a well established data structure. SnapPy has a large
database of knot and link exterior triangulations, and can triangulate a knot drawn by the user using the
PLink library. These triangulations are stored as the Triangulation structure. The triangulation.h
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header file contains the type declarations of Triangulation, EdgeClass, and Cusp, along with comments
for their interpretation [Cul+23].

struct Tr iangu la t i on {
char ∗name ;
int num_tetrahedra ;
. . .
int num_cusps ;
. . .
Tetrahedron tet_l i s t_beg in , tet_l i s t_end ;
EdgeClass edge_list_begin , edge_list_end ;
Cusp cusp_list_begin , cusp_list_end ;

} ;

The Triangulation struct contains all the triangulation information for a triangulated 3-manifold. The
tetrahedra of the triangulation are stored as a doubly linked list of Tetrahedron structs in tet_list_begin.
Similarly, for edge_list_begin, which contains information about the edges of the triangulation and
cusp_list_begin, which contains information about each cusp of the manifold.

struct Tetrahedron {
Tetrahedron ∗neighbor [ 4 ] ;
Permutation g lu ing [ 4 ] ;
Cusp ∗ cusp [ 4 ] ;
int curve [ 2 ] [ 2 ] [ 4 ] [ 4 ] ;
EdgeClass ∗ edge_class [ 6 ]
. . .

} ;

Each vertex of a Tetrahedron is given a label {0, 1, 2, 3}, which gives a natural labelling of the faces (the
face opposite a vertex). The attribute neighbour[i] is a pointer to the tetrahedron which glues to face i.
The attribute gluing[i] is a permutation of {0, 1, 2, 3}, which describes the gluing of the tetrahedra using
the following scheme. Let σ ∈ Sym({0, 1, 2, 3}) be the i-th entry in the gluing array. Then σ(i) is the face of
neighbour[i] which glues to face i. Additionally, for k ∈ {0, 1, 2, 3} and k ̸= i then σ(k) is a vertex on the
tetrahedron neighbour[i] which is glues to vertex k when the face i on the tetrahedron is glued to face σ(i)
on neighbour[i]. The gluing permutations are used to calculate which cusp triangle is adjacent across an
edge of a cusp triangle. The attribute curve[M][0][v][e] is a 4 dimensional array consisting of the net
number of times the meridian crosses edge e of the cusp triangle at vertex v. The constant M refers to the
meridian curve, which can be changed to L for the longitude curve. SnapPy substitutes these constants with
0 and 1 to index into the curve array. In order to handle the case of non orientable cusps, SnapPy considers
two cusp triangles at each vertex to place the boundary curves on. The second dimension of the array, which
is set to 0, is used to access the two cusp triangles. For our purposes, we are only considering tori boundary
components, for which we only need one cusp triangle.

struct Cusp {
int index ;
. . .

}

The cusp[i] attribute of a tetrahedron is a pointer to the Cusp struct which the cusp triangle at vertex
i of the tetrahedron lies in. For each boundary component of the manifold, SnapPy creates a Cusp struct
which stores information about the cusp. We use the index attribute of the cusp struct to identify which
boundary components each cusp triangle belongs to.

struct EdgeClass {
int index ;
. . .

}

38



The edge_class[i] attribute of a tetrahedron is a pointer to the EdgeClass struct corresponding to the edge
of triangulation on edge i of the tetrahedron. The index attribute is the edge class, from Definition 2.10, of
the edge. SnapPy labels the edges of a tetrahedron 0, . . . 5 by which vertices they lie between. The following
comment is contained in edge_classes.c in the SnapPy kernel [Cul+23].

/∗
∗ The edges o f a t e t rahedron are indexed
∗ accord ing to the f o l l ow i n g t a b l e :
∗
∗ l i e s l i e s
∗ edge between between
∗ f a c e s v e r t i c e s
∗ 0 0 ,1 2 ,3
∗ 1 0 ,2 1 ,3
∗ 2 0 ,3 1 ,2
∗ 3 1 ,2 0 ,3
∗ 4 1 ,3 0 ,2
∗ 5 2 ,3 0 ,1
∗
∗/

6.1 Cusp Triangulation
The first data structure we construct is a doubly linked list of cusp triangles, which stores information about
each cusp triangle. All the information comes from the Triangulation data. Each tetrahedron contributes
4 cusp triangles. Each edge of a cusp triangle lies in a face of the tetrahedron which it comes from, so we
have a labelling of the cusp edges by the faces of the tetrahedron. This labelling gives a labelling of the
vertices of the cusp triangle, by the edge opposite the vertex.

typedef struct CuspTriangle {
Tetrahedron ∗ t e t ;
int tet_index ;
int tet_vertex ;
CuspVertex v e r t i c e s [ 4 ] ;
struct CuspTriangle ∗neighbours [ 4 ] ;
struct CuspTriangle ∗next ;
struct CuspTriangle ∗prev ;

} CuspTriangle ;

The attribute tet is a pointer to the tetrahedron the cusp triangle comes from. The attribute tet_index is
tet->index, so the index is easier to access. The attribute tet_vertex is the vertex of the tetrahedron cut off
by the cusp triangle. The attribute vertices[v] is the CuspVertex vertex v, with vertices[tet_vertex]
set to NULL. The attribute neighbours[e] is a pointer to the CuspTriangle adjacent across edge e, with
neighbours[tet_vertex] set to NULL. The attributes next and prev are used as part of the linked list data
structure.

typedef struct CuspVertex {
int edge_class ;
int edge_index ;
EdgeClass ∗ edge ;
int v1 ;
int v2 ;

} CuspVertex ;

Each vertex of a cusp triangle is given a CuspVertex object. Note however, that we have multiple, different
CuspVertex objects for the same vertex in the cusp triangulation. The main purpose of the CuspVertex is
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the keep track of the edge class and edge index of each cusp vertex. Each cusp vertex lies on an edge, edge,
of a tetrahedron which in turn lies on an edge of the triangulation. The edge connects two vertices of the
tetrahedron, v1 and v2. For tri->vertex[v] on a cusp triangle, we set v1 = tri->tet_vertex and v2 =
v. The attribute edge stores tet->edge_class[i] which i is the index of the edge lying between v1 and
v2. This edge belongs to an edge class, edge_class, as described in Definition 2.10. If the ends of an edge
lie in the same cusp, then edge_index is used to distinguish these two ends in the cusp triangulation.

6.2 Cusp Region
The Cusp Regions are connected components of a torus cusp minus the edges of the triangulation, the
boundary curves, and any curves constructed on the cusp such as train lines or oscillating curves, as defined
previously in Definition 5.1. One of the significant runtime costs of the algorithm is updating and finding
cusp regions, so to reduce this cost we store all the cusp regions on a given cusp triangle in a doubly linked
list, keeping a linked list for each cusp triangle. Depending on the triangulation and the number of cusps, the
number of cusp regions can explode into the hundreds of thousands with only 20 oscillating curves. When
running the algorithm on a test set of 60,000 knots and links, this optimisation cut the run time from weeks
down to hours. We define a cusp region as follows.

typedef struct CuspRegion {
CuspTriangle ∗ t r i ;
int tet_index ;
int tet_vertex ;
int index ;
bool adj_cusp_tr iangle [ 4 ] ;
int curve [ 4 ] [ 4 ] ;
bool d ive [ 4 ] [ 4 ] ;
int num_adj_curves [ 4 ] [ 4 ] ;
int temp_adj_curves [ 4 ] [ 4 ] ;
struct CuspRegion ∗adj_cusp_regions [ 4 ] ;
struct CuspRegion ∗next ;
struct CuspRegion ∗prev ;

} CuspRegion ;

Each cusp region lies in a single cusp triangle, since we remove the edges of the triangulation in the cusp
region definition. The attribute tri stores a pointer to the cusp triangle the region lies in. The attributes
tet_index and tet_vertex come from the CuspTriangle, tet_index = tri->tet_index and tet_vertex
= tri->tet_vertex. The attribute adj_cusp_triangle[e] is True if the cusp region meets edge e of the
cusp triangle and False otherwise. If the cusp region meets edge e of the cusp triangle it lies in, then
the attribute curve[e][v] is the number of curves between the cusp region and vertex v along the edge e,
otherwise it is set to 0. The attribute dive[e][v] is True if there exists a curve in this CuspRegion which can
dive along cusp edge e into cusp vertex v, otherwise dive[e][v] is False. The attributes num_adj_curves
and temp_adj_curves are used the keep track of the number of curves between the cusp region and an edge,
num_adj_curves[e][v] is the number of curves which dive along cusp edge e into cusp vertex v between the
cusp region and cusp edge e. The attribute adj_cusp_regions[e] is a pointer to the cusp region adjacent
across edge e, or NULL if this region does not exist. We are only adjacent to at most 3 regions across edges of
the cusp triangle since the oscillating curves pass between distinct sides of each cusp triangle (Lemma 4.6).

Example 6.1. Consider the cusp region indicated in green on Figure 29.
We will initialise cusp region, region, explicitly. This region lies in some cusp triangle tri, so we set
region.tri = tri. We transfer some attributes from the cusp triangle up to the cusp region, region.tet_index
= tri.tet_index and region.tet_vertex = tri.tet_vertex. We keep track of the number of cusp re-
gions we have currently initialised, i, set region.index = i and increment i by 1. Since the cusp region lies
between two curves passing around vertex 2,

region.adj_cusp_triangle = [false, true, false, true]
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Figure 29: Cusp Region.

We define a function Flow which takes 2 cusp triangle edges and returns the number of curves between these
two edges. So Flow(1, 3) = 2, there are 2 curves passing between edges 1 and 3. The target cusp region has
1 curve between the region and vertex 2. So we find the number of curves towards vertex 2,

region.curve[1][2] = 1, region.curve[3][2] = 1.

Next we find the number of curves along edge 1 towards vertex 3. The flow between edges 1 and 2, Flow(1,
2), is 2, so

region.curve[1][3] = Flow(1, 3) + Flow(1, 2)− 1 = 3

Finally, the number of curves along edge 3 towards vertex 1. The flow between edges 2 and 3, Flow(2, 3), is
1, so

region.curve[3][1] = Flow(1, 3) + Flow(1, 2)− 1 = 2

So we have the complete curve matrix,

r eg i on . curve = {
{0 , 0 , 0 , 0} , {0 , 0 , 1 , 3} , {0 , 0 , 0 , 0} , {0 , 2 , 1 , 0}

} ;

This region cannot dive along any face towards a vertex so the entire dive matrix is False.

r eg i on . d ive = {
{False , False , False , Fa l se } ,
{False , False , False , Fa l se } ,
{False , False , False , Fa l se } ,
{False , False , False , Fa l se }

} ;

The arrays num_adj_curves and temp_adj_curves initialised the arrays to 0. Note since we cannot dive
into any vertex of this cusp triangle, we will not use these arrays for this particular cusp region. The array
adj_cusp_regions cannot be found until we have all the cusp regions, so we leave this array uninitialised.

Example 6.2. Consider the cusp triangle shown in Figure 30.
For simplicity, we will start with no curves on the cusp triangle, so we have one cusp region, region. Suppose
the cusp region lies in the cusp triangle tri, which has tet_vertex = 0, with adjacent cusp regions across
face 1, 2 and 3, r1, r2 and r3 respectively.

r eg i on . t r i = t r i ;
r eg i on . tet_index = tet_index ;
r eg i on . tet_vertex = 0 ;
r eg i on . index = index ;
r eg i on . curve = {
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Figure 30: Cusp Region.

{0 , 0 , 0 , 0} , {0 , 0 , 0 , 0} , {0 , 0 , 0 , 0} , {0 , 0 , 0 , 0}
} ;
r eg i on . adj_cusp_tr iangle = { f a l s e , true , true , t rue } ;
r eg i on . d ive = {

{False , False , False , Fa l se } ,
{False , False , True , True } ,
{False , True , False , True } ,
{False , True , True , Fa l se }

} ;
r eg i on . num_adj_curves = {

{0 , 0 , 0 , 0} , {0 , 0 , 0 , 0} , {0 , 0 , 0 , 0} , {0 , 0 , 0 , 0}
} ;
r eg i on . adj_cusp_regions = {NULL, r1 , r2 , r3 } ;

3
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2 1

region2

region1

Figure 31: Cusp Region.

Now we draw the curve show on Figure 31. Then we need to create two new cusp regions region1, region2.
Because the curve crosses edge 3, region1 sees an extra curve on edge 3 towards vertex 2, and region2 sees
an extra curve on edge 3 towards vertex 1.

region1.curve[3][2] = region.curve[3][2] + 1 = 1

region2.curve[3][1] = region.curve[3][1] + 1 = 1

Since the curve runs around the vertex 2, and dives through the manifold along face 1, region2 is only
adjacent to face 3. The curve also contributes to the array num_adj_curves, since the curve dives along face
1 into vertex 2, we set

region2.num_adj_curves[1][2] = region.num_adj_curves[1][2] + 1 = 1
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This curve will split the region r3 into two regions r3’ and r3”. In the algorithm, these are not calculated
until after all regions have been split.

r eg ion1 . t r i = t r i ;
r eg ion1 . tet_index = tet_index ;
r eg ion1 . tet_vertex = 0 ;
r eg ion1 . index = num_cusp_regions + 1 ;
r eg ion1 . curve = {

{0 , 0 , 0 , 0} , {0 , 0 , 0 , 0} , {0 , 0 , 0 , 0} , {0 , 0 , 1 , 0}
} ;
r eg ion1 . adj_cusp_tr iangle = {False , True , True , True } ;
r eg ion1 . d ive = {

{False , False , False , Fa l se } ,
{False , False , True , True } ,
{False , True , False , True } ,
{False , True , False , Fa l se }

} ;
r eg ion1 . num_adj_curves = {

{0 , 0 , 0 , 0} , {0 , 0 , 0 , 0} , {0 , 0 , 0 , 0} , {0 , 0 , 0 , 0}
} ;
r eg ion1 . adj_cusp_regions = {NULL, r1 , r2 , r3 ’ ’ } ;

r eg ion2 . t r i = t r i ;
r eg ion2 . tet_index = tet_index ;
r eg ion2 . tet_vertex = 0 ;
r eg ion2 . index = num_cusp_regions + 2 ;
r eg ion2 . curve = {

{0 , 0 , 0 , 0} , {0 , 0 , 0 , 0} , {0 , 0 , 0 , 0} , {0 , 1 , 0 , 0}
} ;
r eg ion2 . adj_cusp_tr iangle = {False , False , False , True } ;
r eg ion2 . d ive = {

{False , False , False , Fa l se } ,
{False , False , True , Fa l se } ,
{False , False , False , Fa l se } ,
{False , False , True , Fa l se } ,

} ;
r eg ion2 . num_adj_curves = {

{0 , 0 , 0 , 0} , {0 , 0 , 1 , 0} , {0 , 0 , 0 , 0} , {0 , 0 , 0 , 0}
} ;
r eg ion2 . adj_cusp_regions = {NULL, NULL, NULL, r3 ’ } ;

6.3 Cusp Region Graph
We have a local view of the cusp regions, coming from the adj_cusp_regions array of each cusp region.
The purpose of the Cusp Region graph is to construct a global view of the cusp regions, which allows us to
use breadth first search for path finding. Each cusp region is given a vertex in the graph, labelled by the
index attribute of the cusp region. For each cusp region, we insert an edge to each of the adjacent regions
into the Cusp Region graph. The graph is undirected and is stored using an adjacency list of EdgeNodes.

typedef struct EdgeNode {
int y ;
struct EdgeNode ∗next ;
struct EdgeNode ∗prev ;

} EdgeNode ;
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The attribute y is a vertex of the graph. The attributes next and prev are used as part of the doubly linked
list data structure.

typedef struct Graph {
EdgeNode ∗ edge_l i st_begin ;
EdgeNode ∗ edge_list_end ;
int ∗ degree ;
int ∗ c o l o r ;
int num_vertices ;

} Graph ;

The attributes edge_list_begin and edge_list_end store the adjacency list of edges as follows. An
EdgeNode edge in the doubly linked list edge_list_begin[v] represents an edge of the graph (v, edge->y).
The attribute degree[v] is the degree of the vertex v. The attribute color is an array used for bipartite
coloring of the end multi graph. The attribute num_vertices is the number of vertices in the graph.

6.4 End Multi Graph
The end multi graph consists of a graph where the vertices are cusps of the manifold and edges are edges of
the triangulation. The cusps are indexed by SnapPy, so we reuse this indexing for the graph structure. The
edges of the triangulation are also indexed by the edge class, and we keep track of the edge class associated
to each edge in the end multi graph since we may have multiple edges between a pair of cusps.

typedef struct EndMultiGraph {
int e0 ;
int num_edge_classes ;
int num_cusps ;
int ∗∗ edges ;
Boolean ∗ edge_c las se s ;
Graph ∗multi_graph ;

} EndMultiGraph ;

The attribute e0 is the edge class we have chosen to be E0. The attribute multi_graph is a pointer to
a spanning tree for the end multi graph. The attribute edges[u][v] is the edge class of the edge (u, v)
in the spanning tree for the end multi graph, where u and v are cusps of the manifold. The attribute
edge_classes[edge_class] is True if edge_class is in the set of edges εc, the edges in the spanning tree
for the end multi graph and E0, and is False otherwise.
When we construct an oscillating curve, we need a cycle of even length through the end multi graph. We
firstly find a path of odd length using graph in multi_graph plus the edge e0, which gives us the path as a
sequence of cusp indices (using EdgeNodes). To construct oscillating curves dual to the curves Ci, we need
some more information. We convert the sequence of EdgeNodes into a sequence of CuspNodes, a process we
described in Example 5.14.

typedef struct CuspNode {
int cusp_index ;
int edge_class [ 2 ] ;
struct CuspNode ∗next ;
struct CuspNode ∗prev ;

} CuspNode ;

A CuspNode represents a template for a single curve component of an oscillating curve. We use the
edges matrix to find the edge class associated to each edge in the path of PathNodes. The attribute
edge_class[START] is the edge class the curve starts at, with edge_class[FINISH] is the edge class the
curve finishes at. The attribute cusp_index is the index of the cusp the node lies in. The attributes next
and prev are pointers to the next and previous CuspNodes for the doubly linked list. The start and finish
edge classes are set such that when each curve component is oriented from start to finish, we obtain an
oscillating curve.
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6.5 Path Nodes and End Points
We represent curves on a cusp using PathNodes and PathEndPoints. The oscillating curves and train lines
with sidings are made up of curves which begin and end cusp vertices, and pass through a number of cusp
regions. The cusp regions the curve passes through are stored as a doubly linked list of PathNodes.

typedef struct PathNode {
int cusp_region_index ;
int next_edge ;
int prev_edge ;
int i n s ide_ver tex ;
struct CuspTriangle ∗ t r i ;
struct PathNode ∗next ;
struct PathNode ∗prev ;

} PathNode ;

The cusp_region_index attribute is the index of the CuspRegion the PathNode is contained in. Each curve
is oriented, next_face (resp. prev_face) is the edge of the cusp triangle the exits (resp. enters) the cusp
triangle across. The PathNode can be considered as an arc of the curve which is contained in a cusp triangle,
and this arc cuts of a vertex inside_vertex of the cusp triangle. The tri attribute is a pointer to the
CuspTriangle the PathNode lies in. The next and prev attributes are used for the doubly linked list.

The PathNodes give the path from starting cusp region to the final one. Consider a PathNode as a point
on a cusp region, a PathEndPoint represent a curve from the PathNode to a cusp vertex. Each cusp region
keeps track of whether of not we can dive into a vertex of the cusp triangle along a given edge. We illustrate
how a curve dives through the manifold along an edge of a tetrahedron. The curve lies on the cusp triangle
of vertex v1, passes along the edge F of the top cusp triangle, down the vertex v2 and then enters the lower
cusp triangle along the face F . Figure 32 shows this oscillating curve as viewed on a slice of a tetrahedron
(left) and the corresponding curve on the cusp triangulation (right).

Ei

v2

v1

F v1

v2

F

v1

v2

F

Figure 32: Oscillating curve on a slice of a tetrahedron (left), and the oscillating curve on the cusp triangles
at v1 and v2 (right).

typedef struct PathEndPoint {
int edge ;
int ver tex ;
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int cusp_region_index ;
int num_adj_curves ;
struct PathNode ∗node ;
struct CuspRegion ∗ r eg i on ;
struct CuspTriangle ∗ t r i ;

} PathEndPoint ;

The edge attribute is the cusp edge the curve runs adjacent to. The vertex attribute is the cusp vertex
which the curve enters. The cusp_region_index attribute is the index of the CuspRegion the curve is
contained in. The num_adj_curves attribute is the number of curves which run through the cusp triangle
containing the PathEndPoint, between the PathEndPoint curve and cusp edge edge, into the cusp vertex
vertex. The node attribute is a pointer to a PathNode which this PathEndPoint joins up to. The region
and tri attributes are pointers to the cusp region and cusp triangle the path end point lies in.

In the process of constructing an oscillating curve, we find a path through the cusp region graph, which gives
a sequence of EdgeNodes. We convert this path to a path of PathNodes. To find the next curve on the cusp,
we add this curve to the curves used to construct the cusp regions. Now the PathNodes and PathEndPoints
are not contained in a cusp region, so the region pointers are no longer needed. In the end, we want to find
the combinatorial holonomy of each arc, and the next_edge, prev_edge, tri attributes are sufficient to find
the holonomy.

6.6 Cusp Structure
The CuspStructure struct is a collection of the various objects contained on a cusp of the manifold. The
program uses an array of manifold->num_cusps() CuspStructure structs, to keep track of the entire
manifold.

typedef struct CuspStructure {
int i n te r sec t_tet_index ;
int i n t e r s e c t_te t_ver t ex ;
int num_edge_classes ;
int num_cusp_triangles ;
int num_cusp_regions ;
Tr iangu la t i on ∗manifo ld ;
Cusp ∗ cusp ;
Graph ∗ cusp_region_graph ;
CuspTriangle cusp_tr iangle_begin ;
CuspTriangle cusp_triangle_end ;
CuspRegion ∗ cusp_region_begin ;
CuspRegion ∗cusp_region_end ;
PathNode train_line_path_begin ;
PathNode train_line_path_end ;
PathEndPoint ∗ tra in_l ine_endpoint [ 2 ] ;

} CuspStructure ;

The attributes intersect_tet_index and intersect_tet_vertex refer to the cusp triangle at vertex
intersect_tet_vertex of the tetrahedron with index intersect_tet_index which peripheral_curves()
chose to place the intersection of the boundary curves on.

6.7 Train Lines
The train line is a path on each cusp which interconnects a certain collection of edge classes on the cusp. The
train line is stored as a doubly linked list of PathNodes, and two arrays of PathEndPoints. The cusp triangles
the curve passes through is stored by the PathNodes and how the curve dives into the manifold is stored in
the PathEndPoints. The train_line_endpoint[edge_index][edge_class] attribute in CuspStructure is
the PathEndPoint associated to edge index edge_index and edge class edge_class. For PathEndPoints not
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in use, we set the tri attribute to NULL. The curves which are placed on the train line change the orientation
of each curve of the train line it uses in order to have the desired orientation.

6.8 Oscillating Curves
Each oscillating curve is broken up into CurveComponents, with each component consisting of a section of
an oscillating curve lying on a single cusp.

typedef struct CurveComponent{
int edge_class [ 2 ] ;
int cusp_index ;
PathNode path_begin ;
PathNode path_end ;
PathEndPoint endpoints [ 2 ] ;
struct CurveComponent ∗next ;
struct CurveComponent ∗prev ;

} CurveComponent ;

Each curve component dives into the manifold at either end, and the edge class it dives into is stored in
edge_class[START] and edge_class[FINISH], with the curve oriented to run from START to FINISH. The
cusp_index attribute stores the cusp->index attribute from the Cusp the curve lies in. The path of the
curve is stored as a doubly linked list of PathNodes, with the header in path_begin. The attribute endpoints
stores a PathEndPoint for the start and end of the curve. The attributes next and prev are used in the
doubly linked list data structure.
The OscillatingCurve struct stores all the oscillating curves on the manifold. The number of oscillating
curves is the number of tetrahedra in the triangulation minus the number of cusps.

typedef struct Osc i l l a t i ngCurve s {
int num_curves ;
int ∗ edge_class ;
CurveComponent ∗ curve_begin ;
CurveComponent ∗curve_end ;

} Osc i l l a t i ngCurve s ;

Each oscillating curve intersects an edge curve C which encircles a cusp vertex with an edge class, which we
associate to this oscillating curve. The attribute edge_class[i] is the edge class associated with the i-th
oscillating curve. Each oscillating curve is stored as a doubly linked list of CurveComponents. The attribute
curve_begin[i] is the header node of a doubly linked list of CurveComponents for the i-th oscillating curve.
In order to calculate the combinatorial holonomy of each curve, we store the intersection numbers of each
curve with each cusp edge, in a similar fashion to the boundary curves. SnapPy provides a generic extra
pointer on each Tetrahedron which we are free to declare the implementation of and use.

struct ext ra {
int curve [ 4 ] [ 4 ] ;

} ;

We add an array of manifold->num_tetrahedra extra structs to each Tetrahedron. On a tetrahedron tet,
tet->extra[edge_class].curve[v][e] is the net number of the oscillating curve associated with edge class
edge_class, crosses the cusp edge e of the cusp triangle at vertex v of tetrahedron tet.

6.9 Neumann-Zagier Matrix
We describe explicitly the process SnapPy uses to reconstruct the combinatorial holonomy from the inter-
section numbers of a curve. The function to do this for m and l is contained in
kernel/addl_code/get_gluing_equations.c in the function get_cusp_equation(), and described in Al-
gorithm 6. The process applies to the oscillating curves, replacing tet.curve[c][right_handed] with
tet.extra[edge_class].curve. The arrays remaining_face and edge3_between_faces are tables pro-
vided by SnapPy for working with tetrahedra. SnapPy contains the following comment explaining the table:
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"Given two faces i and j, remaining_face[i][j] tells you the index of one of the remaining faces. For a
right_handed tetrahedron the faces i, j, and remaining_face[i][j] are arranged in a counterclockwise
order around their common ideal vertex. Thus, for two faces i and j, remaining_face[i][j] gives one of
the remaining faces and remaining_face[j][i] gives the other." [Cul+23]. The definition of a right handed
tetrahedron is not important, all tetrahedra in a triangulation of a manifold with tori boundary components
are right handed. We use the remaining face table to ensure we pick up a negative sign when we go clockwise
around a vertex, and a positive sign when we go anti-clockwise. The array edge3_between_faces[i][j]
gives the index of the complex edge parameter associated with the edge of the triangulation lying between
faces i and j. This gives us the basis vector a,b or c lying between i and j. Finally, the function FLOW
reconstructs simple closed curves from the homological information. More specifically "Let A be the number
of times a curve intersects one side of a triangle, and B be the number of times it intersects a different side
(of the same triangle). Then FLOW(A,B) is the number of strands of the curve passing from the first side to
the second." [Cul+23].

Algorithm 6: Combinatorial Holonomy
input : Triangulation M , and boundary curve c.
output: The combinatorial holonomy of the boundary curve c.

1 eqn← [0] ∗ (3 ∗manifold.num_tetrahedra);
2 for tet ∈ manifold.tetrahedra[] do
3 for 0 ≤ v ≤ 3 do
4 for 0 ≤ f1 ≤ 3 and f1! = v do
5 f2 ← remaining_face[vertex][f1];
6 eqn[3 ∗ tet.index+ edge3_between_faces[f1][f2]]+ =

FLOW(tet.curve[c][right_handed][v][f1], tet.curve[c][right_handed][v][f2]);
7 end
8 end
9 end

10 return eqn;

7 Examples

7.1 Figure-8 Knot
To illustrate the algorithm, we find oscillating curves for the figure-8 knot, which turn out to be different to
the ones found in Section 4. SnapPy gives the figure-8 knot a triangulation consisting of 2 tetrahedra. To
begin, we construct a small picture of the single cusp, Figure 33, using the gluing information provided by
SnapPy.
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Figure 33: Cusp Triangulation of the Figure 8 knot. Cusp triangles from tetrahedron 0 are coloured blue,
cusp triangles from tetrahedron 1 are colored green. The central number of each cusp triangle is the vertex
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Then we extract the intersection numbers of the meridian and longitude curves with the edges of each cusp
triangle, which is provided by SnapPy, and draw a candidate curve on the cusp, Figure 34 and Figure 35.
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Figure 34: Meridian Curves

The function peripheral_curve() picks out the cusp triangle coming from vertex 0 of tetrahedron 0 as the
intersection cusp triangle. So we combine the meridian and longitude curves onto one picture, placing the
intersection on this cusp triangle, Figure 36.
Next we construct the cusp regions on this cusp with the boundary curves, and the cusp region graph
(Figure 37).
The end multi graph consists of only a single vertex and edge which loops on the vertex. Hence, an oscillating
curve consists of two components, both of which start at edge class 0 and finish at edge class 1. Searching
through the cusp regions sequentially, we find cusp region 2 as the first cusp region which can dive along
face 2, into the cusp vertex 3 which corresponds to edge class 0 and edge index 0. Similarly, we find cusp
region 2 as a region which can dive along face 3 into the cusp vertex 1 which corresponds to edge class 1 and
edge index 0. Using breadth first search we find a path from vertex 2 to vertex 2, which consists of a single
node. Then we place a curve on cusp region 2 which dives into the two cusp vertices, and split cusp region
2 by modifying the attributes of cusp region 2 and adding cusp region 25, Figure 38.
The choice of cusp region 2 to dive along face 2 into vertex 3 induces the choice of cusp region 6, diving
along face 1 into vertex 0. Similarly, the choice of cusp region 2 to dive along face 3 into vertex 1 induces the
choice of cusp region 12, diving along face 3 into vertex 0. Then we find a path through the Cusp Region
graph from vertex 6 to vertex 12, which gives the path [6, 16, 3, 21, 12] (Figure 39).
Finally, we calculate the combinatorial holonomy for the meridian and longitude curve, the curve going
around edge class 1, C1, and the oscillating curve.

SY =


0 0 −2 4
−1 0 −2 −3
−2 −1 1 2
0 −1 1 2


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Figure 35: Longitude
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Figure 36: Meridian and longitude curves, with the intersection placed on the cusp triangle at vertex 0 of
tetrahedron 0.
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Figure 37: Cusp Region graph.
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Figure 38: First half of the oscillating curve.
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Figure 39: Second half of the oscillating curve.
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7.2 L6a4 Link
Consider the L6a4 link, shown in Figure 40. The link complement of L6a4 has 3 cusps, and SnapPy gives
the complement a triangulation consisting of 8 tetrahedra [Cul+23]. Show in Figure 41, 42, and 43 are the
cusp triangulations for each cusp of L6a4. We chose a spanning tree for the end multi graph consisting of
edge class 4, which connects cusp 0 to cusp 1, and edge class 2, which connects cusp 0 to cusp 2. We also
pick edge class 0, which connects cusp 1 to cusp 2, to be E0. For the train lines with sidings, we have 3
collections of edge classes,

L(C0) = {2, 4}, L(C1) = {0, 1, 4, 6}, L(C2) = {0, 2}.

We have 5 oscillating curves, which are made up the following components,

Γ0: Corresponds to edge class 1, which connects cusp 1 to cusp 1.

Cusp 1: Starts at edge class 1, edge index 1 and ends at edge class 0, edge index 0.

Cusp 2: Starts at edge class 2, edge index 0 and ends at edge class 0, edge index 0.

Cusp 0: Starts at edge class 2, edge index 0 and ends at edge class 4, edge index 0.

Cusp 1: Starts at edge class 1, edge index 0 and ends at edge class 4, edge index 0.

Γ1: Corresponds to edge class 3, which connects cusp 1 to cusp 2.

Cusp 1: Starts at edge class 3, edge index 0 and ends at edge class 4, edge index 0.

Cusp 2: Starts at edge class 3, edge index 0 and ends at edge class 4, edge index 0.

Γ2: Corresponds to edge class 5, which connects cusp 1 to cusp 2.

Cusp 1: Starts at edge class 5, edge index 0 and ends at edge class 2, edge index 0.

Cusp 2: Starts at edge class 5, edge index 0 and ends at edge class 2, edge index 0.

Γ3: Corresponds to edge class 6, which connects cusp 1 to cusp 1.

Cusp 1: Starts at edge class 6, edge index 1 and ends at edge class 0, edge index 0.

Cusp 2: Starts at edge class 2, edge index 0 and ends at edge class 0, edge index 0.

Cusp 0: Starts at edge class 2, edge index 0 and ends at edge class 4, edge index 0.

Cusp 1: Starts at edge class 6, edge index 0 and ends at edge class 4, edge index 0.

Γ4: Corresponds to edge class 7, which connects cusp 1 to cusp 2.

Cusp 1: Starts at edge class 7, edge index 0 and ends at edge class 0, edge index 0.

Cusp 2: Starts at edge class 7, edge index 0 and ends at edge class 0, edge index 0.

The algorithm finds the train lines with sidings and oscillating curves shown in Figure 44, 45, and 46.
Calculating the combinatorial holonomy of each boundary curve, edge curve and oscillating curve we obtain
the following matrix.
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m0 : ( 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1 )
l0 : ( -1, -1, 0, 1, 1, 1, -1, 0, 0, 0, 0, -1, -1, 0, 0, 0 )
m1 : ( 0, -1, 1, 1, 1, 0, 0, -1, 0, 1, 1, 0, 1, 1, -1, -1 )
l1 : ( -1, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0 )
m2 : ( 0, -1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0 )
l2 : ( 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0 )
C0 : ( -1, -1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, -1 )
Γ0 : ( 0, -1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 1, 0 )
C1 : ( 0, 1, -1, -1, 0, -1, 0, 0, -1, -1, 1, 1, 0, 0, 0, 1 )
Γ1 : ( 0, 0, 0, 0, 1, 1, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0 )
C2 : ( 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1 )
Γ2 : ( 1, 1, 0, 0, 0, -1, 1, 0, 1, 0, 0, 1, 1, -1, 1, 0 )
C3 : ( 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, -1, -1, -1, -1, 0, 0 )
Γ3 : ( -1, -2, 1, 2, -1, 0, 0, 1, 0, 0, 1, 1, 2, 1, -1, -1 )
C4 : ( 0, 0, 0, 0, -1, -1, 1, 0, 0, -1, 0, 1, 1, 0, 1, 1 )
Γ4 : ( 1, 0, 0, 0, -1, 0, 1, 2, 1, -1, -1, 0, 0, -1, 1, 1 )

This matrix is not symplectic (up to factors of 2) since,

ω(Γ0,Γ3) = 2.

It is currently unknown why these curves have non zero holonomy, since they have the same holonomy for
each cusp triangle they enter.

Figure 40: L6a4 link [Cul+23].
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Figure 44: Cusp 0 of L6a4 with oscillating curves, shown in blue, and train line with sidings, shown in yellow
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Figure 45: Cusp 1 of L6a4 with oscillating curves, shown in blue, and train line with sidings, shown in yellow
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Figure 46: Cusp 2 of L6a4 with oscillating curves, shown in blue, and train line with sidings, shown in yellow
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8 Conclusion
In conclusion, we have developed and implemented an algorithm which constructs a symplectic basis for knot
complements. We have made progress towards constructing oscillating curves on link complements. The
implementation for knot complements has been tested on the HTLinkExteriors database which contains
313,230 knots. This has been merged into the SnapPy source code [Cul+23], with the algorithm contained
in the C file kernel/kernel_code/symplectic_basis.c. The train lines are partially implemented in the
symplectic-basis python package https://pypi.org/project/symplectic-basis/, with the source code
available at https://github.com/jchilds0/symplectic-basis. Further research is needed to understand
how oscillating curves on train lines with sidings interact with the symplectic form ω, along with proofs
of the conjectures made earlier in this paper. SnapPy currently contains a gui to view links and the cusp
triangulations of each cusp, this could be extended to show the oscillating curves and train line constructed.
Currently, the oscillating curve information is kept long enough to construct the symplectic matrix. Instead,
this information could be stored as part of the triangulation, to be used elsewhere as new algorithms involving
oscillating curves are developed.
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